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Broken Symmetry of Two-Component v = 1/2 Quantum Hall States
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We show that the v = I/2 quantum Hall states in bilayer systems are triplet p-wave pairing states of
composite fermions exactly the same as He superfluids. The observed persistence (though weakening)
of the I/2 state in the two- to one-component crossover region is identical to the well known A to
Al transition in 'He. This illustrates the remarkable phenomenon of "incompressible deformation" of
quantum Hall states. The broken symmetry of the v = I/2 state is a "pairing" vector d, which implies
a "pseudo" magnetization ~ id X d*. In the presence of layer tunneling, the (331) state (d real) is
unstable against other states with "magnetization" (d complex).

PACS numbers: 75.10.—b, 64.60.Cn, 73.20.DX

The robust v = 1/2 quantum Hall state recently discov-
ered in bilayer quantum well systems [1]and the v = 5/2
state discovered [2] some years ago in single-layer systems
have illustrated the dramatic effect of internal degrees of
freedom on the quantum Hall phenomenon, namely, the
formation of multicomponent quantum Hall states. The
5/2 state was discovered in single-layer systems with weak
Zeeman energy, where both up and down spins play equal
role in the makeup of the 5/2 state. Bilayer systems are
in effect pseudospin I/2 systems, even though the electron
spins are frozen by the magnetic field. The two pseudospin
states are the symmetric and antisymmetric states of the
quantum well. Like the single-layer 5/2 state, the bilayer
1/2 state was discovered in the "two-component" regime
[1]where the pseudospins have a weak "Zeeman" energy.
Although our discussions below apply to both types of sys-
tems, for length reasons, we shall focus on bilayer systems
from now on, and refer to pseudospins simply as "spins. "

In the absence of disorder, bilayer systems have three
energy scales: (a) the energy difference 6 between the
symmetric and antisymmetric states (which is the "tunnel-
ing energy" between the layers); (b) intralayer Coulomb
interaction e /4, where Z is the magnetic length; and (c)
interlayer interaction ez/D, where D is the separation be-
tween the layers. These scales in turn lead to three distinct
physical regimes: fl + I), two separate one-component
regime, e /8 » e /D, 5; (2), two-component regime,
ez/4 —ez/D » 5; tl), one single-component regime,
e /8, e /D ~ A. Regime (I + I] is realized for large
D, where the system separates into two weakly coupled
single-layer systems. Regime {2j is the case where in-
tralayer and interlayer interactions are comparable and
dominate over the tunneling energy so that the two spin
populations are nearly degenerate. Regime (3) is the
strong tunneling limit where all electrons lie in the sym-
metric state.

As mentioned before, the I/2 bilayer state [I] was first
discovered in regime (2). However, recent experiments
[3] show that even though the p = 1/2 state is weakened
and eventually disappears as the system is tuned from
t2) to (I), it remains a good quantum Hall state (i.e., in-

compressible) for a sizable range of parameters 5/(ez/4).
Numerical studies [4] indicate that the observed v = I/2
state is likely to be the so-called (331) state [5]. There
are also suggestions [3,6] that the observed persistence of
the v = 1/2 state in the 12) to (I) crossover region corre-
spond to the evolution of the (331) state into the so-called
Pfaffian state [7]. No further analysis, however, has been
made with this suggestion. Moreover, this picture seems
to run counter of the conventional view that the (331) state
cannot evolve continuously into the Pfaffian state as they
have different "topological order" [8].

The purpose of this paper is to point out a fundamental
broken symmetry of the bilayer v = 1/2 states and the
important properties associated with it. This symmetry
is not obvious in the conventional (331) and Pfaffian
representation because they make reference to a specific
spin quantization axis. To reveal this symmetry, it is
necessary to use a general representation independent of
spin quantization axes. The symmetry revealed leads to
the following results.

(I) Both (331) and Pfaffian states are triplet p-wave
BCS states of composite fermions [9,10] with wave
functions identical to that of the A and the A~ phase of
superfluid He [11]. The (331) to Pfaffian transformation
corresponds to the well known A to A~ transition in He.
The broken symmetry of the v = I/2 states is a complex
vector d (referred to as "pairing vector") denoting the
direction of zero spin projection of the triplet pair, i.e.,
d (S) = 0. The d vector of the (331) and the Pfaffian
state is xs and (x3 —ixz)/v 2, respectively.

(II) Contrary to the current topological order arguments
[8], which implies that (331) cannot be deformed continu-
ously into the Pfaffian because they have different degen-
eracies on a torus, we show (from the explicit solution of
a model Hamiltonian) that continuous transition between
them can indeed occur. In other words, there are neither
topological nor intrinsic energetic obstructions to prevent
continuous transformation between any two triplet pairing
states [I2].

(III) In the presence of tunneling (however weak),
the (331) state (d real) is unstable with respect to the
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+ P V (R, —R )S (i)S (j)
2N

HT = —5 QS1(i), (1)
i=1

where R; is the guiding center coordinate of the ith elec-
tron. We have chosen a coordinate system xl, x2, x3 in
spin space such that the symmetric and antisymmetric
states are represented by the spinors (1) and ( 1) respec-
tively and that the layer tunneling 5 acts like a mag-
netic field along xl. The states localized in the upper
and lower layers will then correspond to (o) and (1), and

S3 —g' S3(i) = (Nt —Nt)/2 is the difference in elec-
tron number between the two layers. For typical parame-
ters of the quantum wells (layer separation D, well depth,
etc.), V3 » IV1I, IV2I. The Coulomb interaction V3 favors
equal electron densities on both layers (i.e., (S3"' ) = 0),
while 5 favors a maximum (Si"' ).

In regime i2), numerical studies [4] indicate that the
1/2 state is the (331) state,

N

(a, —a, ) (b; —b, )'
i)j=l

N

Ot'(, )Ot'(b, ) I0&, (2)X (a; —b))'
L,J= 1 i=1

where f =—f [p 1(d a;d b;) exp[ —
4 g; 1(Ia;I +Ib, I )].

In regime (I), the 1/2 state is expected to be close to the
Pfaffian form, which is a spin polarized state

( 1 ) 2N

O (., )Io&,
(z, —z, ),'

where P+(z) = [Pt+(z) + P& (z)]/~2 represents the
symmetric state of the quantum well, and
Ci =— p, ~ 1(z; —

z~) is the Laughlin factor for all
electrons. The Pfaffian of a matrix M; j is defined as

Pf(M;, ) = gp [Pg 1( 1) Mp!21, 1) p~2ki, where P is a
permutation of 2N objects.

We now show that both I%'331& and I'Ppr& belong to the
same family of triplet pairing states, (IN, d&

—= IN, g&),

A p p 0p. (Z2E 1)War (Z2l )

i = 1 Z2I —1 Z2E

where g is a symmetric 2 X 2 matrix (which can be nor-
malized as Tr~ ~ = 2 without loss of generality). Since

(3)

appearance of an imaginary component in d. This is
because (as we shall see) layer tunneling acts as a
"magnetic" field in the pseudospin space, and that a
complex d will generate a magnetization I ~ id && d*.
A complex d is therefore favored. As the (331) evolves
towards the Pfaffian state, ImI grows from zero to a
saturating value equal to half the full density (p/2 =
v/47r = I/8m).

To begin, let us recall the Hamiltonian [13]of a bilayer
system of 2N electrons, H = V + HT,

2N

V = P Vo(R; —R))
i&j=l

the general representation of a 2 X 2 symmetric matrix
is y~, = id . [oc.r2]~„where d is a complex vector,
the triplet space is simply the space of the pairing vec-
tor id) (IdI = 1). From the property (gISIg&/(~Ig& =
2 Tr[g+(S(1) + S(2))y] = 2id X d*, one can see that d
represents the direction of zero spin projection.

To see the relation between I+pr& and Eq. (4), we note
that each term in the Pfaffian contributes identically in

I
'Ij'pr &. Hence,

I@pf& = (2N!) C' M12M34 M2N —1 2NIQ+(zi)p+( z)2]

(z3)0'(«)] [1/ '(z2N-i)0'(z2N)] Io&,

~here M,, = (z, —z, ) '. Apart from a normalization
constant, this is precisely Eq. (4) with g = 2 '~2(11), or
d = (x3 —ix2)/~2. To see the relation between I'P331&
and (4), we make use of the Cauchy identity [14]

N N

[(a; —a, ) (b; —b))] = (a; —b, )
i)j=l i,j =1

X DetI(a; —b, )

The integrand of I%'331) can then be written as
DetIM;~I. Proceeding similar to the Pfaffian case, we

can write

Iqj'331& = (N!) M12M32 ' ' ' M2N —1,2N [f1 (1)$$ (2)]

U(a)%"(ri p, i, . . . , r2N p2N) = (a —z;)
i=1
&&

+(rishi,

, r2NV2N),

is the wave function of the system, and (r; p, ;) denote the
position and the spin of the ith electron. In terms of @+,
Eq. (4) reduces to

IN, x& = (0')" Io),

S .(z, z')4„'(z)P.'(z'), (5)

where g~, (z, z') = (z —z') 'y„„and f =
fd zd z'e '+' & In this form, it is clear
that IN, y) is a triplet p-wave BCS state of composite
fermions. If the composite fermions in Q were ordinary
fermions, I9 331) and I%'p&& reduce to the ground states of
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&& [P,'(3)y„+(4)]" [P,'(2N —I)y,'(2N)] lo&,

where P+(i) = @+(z;). Because M;~ is antisymmetric,
the product Pt (1)r/it+(2) in the integral can be replaced

by the triplet state 2 [pt (I)pt (2) + pt (1)pt (2)], which
takes I P331& into the pairing form Eq. (4), with ~ =
(10), i.e. , d = x3. Thus, we have I'P331& IN, d =
x3), I0 pr&

= IN, d = (x3 i x2)/~2&.
The triplet pairing family [Eq. (4)] can be written

in a more concise form in terms of the composite
fermion operator P„+(z) = P+(z)U(z), where U(z) is
the quasihole operator [15] defined as (in first quantized
form)

2N
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V(ij) = p, (iJ)v,'is = o) (s = oi
L=0,2,4, ...

3

+ g P, (ij) g v,'.Idi,.)(di,.l, (6)
L= 1,3,5,

where PI (ij ) is the projection operator for relative angular
momentum L, and jldl. ), n = 1, 2, 3) are the three
triplet eigenstates in channel L. (The spin wave function
of the singlet is (o.2)» = (p, v I S = 0). The wave

(u)
functions of the triplet are (~1 )~, = (p, v I 1L ~) =
idL [o.o.2]~„. Orthogonality between different triplet
states implies dl ~ dl p

= B~p.) VI', VI' are the
pseudopotentials for the singlet and the triplet in channel
L. Like the triplet states (ldr, )1, they depend on the
external parameters.

Consider now a model potential W(ij) which consists
only of s and p channels. All pseudopotentials are
positive definite except for V1', which is zero. Our model
Hamiltonian is then
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He-A and He-A1 in a thin slab. The slab geometry fixes
the orbital angular momentum axis of the Cooper pairs of
He-A and He-A1 so that their orbital wave functions are

given by x —iy. [The slab geometry has no effect on the
pairing vector, which is x3 for He-A and (x3 —ix2)/~2
for He-Ai [12].]

Note that the entire triplet pairing family Eq. (4) has
filling factor v = 1/2, because of the factor 4 . Since
the triplet pairing space (d) is simply connected, any two
states in this space can be deformed continuously into
one another in an incompressible manner unless prevented
by energetic reasons. In other words, in the absence of
energy obstructions, quantum phase transitions between
two triplet pairing states are either nonexistent or at most
of second (but not first) order. From the expressions of

F33 i) and I Ppf), one can see that the relative angular
momentum L between two electrons of like spins is
at least three in the (331) state, whereas it starts with
L = 1 between in the Pfaffian state. The incompressible
deformation between these two states illustrates clearly
the fact that electrons can release and capture relative
angular momentum in a continuous and incompressible
manner through spin rotations.

An intrinsic "energy obstruction, " however, is nonexis-
tent. To show this, we construct below a continuous fam-
ily of model Hamiltonians fH(d)) with (IN, d)] as their
ground states. (One has in mind that the effect of chang-
ing the external parameters is to change the vector d in
the Hamiltonian. ) The continuity of H(d) then implies
that the system can evolve from one d state to another
continuously without changing its filling factor while re-
maining in the ground state during the entire process.

To motivate this model Hamiltonian, it is useful to
look at the general structure of the pair potential V(ij).
Decomposing it into relative angular momentum channel
(L) and diagonalizing it in spin space within each L
channel, V(ij) can be expressed in the diagonal form

H(d() = g W(ij),
l~J

w(ij) = v'P, (ij) Is = o)(s = ol

+ y V.'Pl(ij) Id. )(d. l,
o.' =2,3

where V', V2, V3 & 0. We now show that IN, d~) is
the ground state of H(d~). Since H(d~) is positive, it
is sufficient to show that IN, d~) is annihilated by the
interaction of any particular pair, say, W(12). Defining
g~ 1 = (p, v I 1 ), the wave function of IN, dt) is

'qf("' " ) = rIi [~~'1(12)g~'1(34) ~ '1((2N —1) (2N))
—+t'l(13)+t'1(24)

X g~'l((2N —1) (2N)) + etc.], (7)

where yt l(ij) = (z; —
z~) gp, , p, There are two kinds

(1)

of terms in Eq. (7); those that contain g~'l(12) and those
that do not. The former will be annihilated by W(12) as
it is orthogonal to W(12) in spin space. The latter will
be annihilated by the angular momentum projections in
W(12) as they contain factors like (z~ —zz)" (z~ + zz)"
with p ~ 2. We have thus shown that IN, d~) is the
ground state of H(d&), and have by now established the
I and II mentioned in the opening.

For bilayer system, the actual path of evolution from
(331) to Pfaffian depends on how the external parameters
are varied. To determine the general feature of this path,
as well as to understand other properties of the triplet
pairing states, we note the important property that d gives
rise to a magnetization

1 (N, diS'""'iN, d)
(N, d i N, d)

S""' = P; &
S(i), where A is the surface area, A is a

function of Idzlz and is of the order of p/2, and p =
v/2' = 1/4m is the total electron density of the two
layers. (This result of m can be derived in a straight-
forward manner using Eq. (4), noting that the numerator
of m is of the form Tr[o (gg )"]Tr[(~~+) ].) An-
alytic evaluation of A(d ) in the thermodynamic limit
turns out to be difficult. However, since the Pfaffian
state (which has 1 = 0) is completely spin polarized,
A must satisfy A(0) = p/2. Using symbolic computa-
tion, we have found that for a four electron system,
~ = (p/2) (1 + 26o ld I )

In the same way of deriving I, one can show that
the energy (per unit area) of the system is E(d) =
(N, 1IH IN, d) (N, 1 I N, 1) is

E(1) = f —gold . x31 —gi(d (d* x3) + c.c.)
+ gzld X 1* x3I —5&id X 1" ~ x~, (9)

where f, gn, g~, g2, and A are functions of ld I . The f
and (g;) terms are contributions from Vo and Vs in V,
respectively. Note that g2 must be positive, otherwise
the two layers will have different electron densities in
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/~ p~(z z) p, t yt
(p(z) p(z')&++ i

i/2 , i/2
&p (z)&tv+ t &p (z') &w+ i

= I/4',

equilibrium, i.e., m . x3 4 0. The fact that the system
is in a (331) state in the absence of layer tunneling [4]
also means that the functional forms of f and g's are such
that E(d) has a minimum at d = x3.

From the expression of E(d), it is easily seen that the
(331) state is unstable against the appearance of a small
imaginary component in d, i.e., d ~ x3 —iexz, e && 1.
This is because the tunneling energy gain [the 5 term
in E(d)] by the resulting magnetization is first order in

e, whereas the cost in Coulomb energy [the f and g
terms in E(d)] is quadratic in e. Thus, in the presence
of tunneling, bilayer I/2 states will not be exactly of
the (331) form. Moreover, the evolution of the (331) to
the Pfaffian state (as the system is tuned from regime
(2) to regime (Ij) must lie within the family d(s) =
x3cos(mrs/4) —in(s) sin(mrs/4), 0 ~ s ~ 1, where n(s)
is a real unit vector in the x2-x3 plane such that n(1) = x2.
The magnetization of this family is along x i, meaning
that the electron densities in both layers remain identical
during this process.

A natural question is what the typical magnitude
of I in the one- to two-component crossover region.
Although a precise answer cannot be given because the
functions f, g, , and A in E(d) are difficult to calculate,
one can estimate the magnitude of m from the recent
studies of Wigner crystal states in bilayer systems [16],
which allows the spins to rotate freely in response to
the tunneling field and the Coulomb interaction. These
studies show that the Wigner crystal at p = 1/2 (as
well as other fillings) acquire a sizable magnetization (a
substantial fraction of the full magnetization p/2) in a
large region of parameter space which covers the two- to
one-component crossover region.

To conclude our symmetry discussions, we show that
the triplet pairing family possesses off diagonal long range
order (ODLRO) similar (but not identical) to those of
single-component quantum Hall fIuids. Proceeding as in
the single-component case [15],we first note that

&p(z')p(z)&w+t = 4(A' + I) S*pg

&«sp( ')0 ( ')0,'( )s.'( ))
where p(z) = P„+(z) t/t„(z) is the density operator,
&p(z')p(z)& + —= && + I +IS (z')p(z)I& + l, g&,
g, (z) = U (z) f(z —a) 'P,+(a)d a. Defining the

operator $ (z) which operators on any state ~%'& as

F.(z) I+&
—= 4„'(z) I+&

x &q ([P„'(z),g]+tP,'(z), gjI+& '/', (IO)

it is easy to show that the matrix

~(z'z). p, .—= &&, ~IFp(z')0. (z')0„(z)F. (z)IAt, ~&

satisfies

as Iz —z I
~ ~, where p —= &p(z)&tv/&I&tv = (4~)

This is a statement of ODLRD. It says that the "density
matrix" W(z, z') p ~„becomes a product of two functions
F(z') pF(z)~„whose overlap with g~„ is exactly the
square root of the density.
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