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Energy Barriers to Motion of Flux Lines in Random Media

Lev V. Mikheev
Nordita, Blegdamsvej 17, DK 2100-, Copenhagen P, Denmark

Barbara Drossel and Mehran Kardar
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

(Received 1 March 1995)

We propose algorithms for determining both lower and upper bounds for the energy barriers
encountered by a Aux line in moving through a two-dimensional random potential. Analytical
arguments, supported by numerical simulations, suggest that these bounds scale with the length t of
the line as t' 3 and t' 3/In t, respectively. This provides the first confirmation of the hypothesis that
barriers have the same scaling as the fluctuation in the free energy.
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Glassy states are characterized by a complex energy
landscape with many (metastable) free energy minima

[1,2]. Some commonly encountered examples are spin
glasses, pinned Aux lines in superconductors, polymers,
domain walls in random field and random bond Ising
models, and many more. Typically, the

fluctuations

between free energy minima in these systems (either
in different realizations or in the same random system)
scale with observation size L as L . On the other hand,
dynamic response of the system is limited by the barriers
in free energy encountered in crossing from one minimum
to another. It is likely that the scale of these barriers
also grows with size as L~. The simplest assumption is
that the two energy scales are comparable, i.e. , it't = 0.
However, it is also quite possible that the heights of the
ridges in the random energy landscape scale differently
from those of the valleys that they separate, with P ) 0.
Yet another scenario is that transport occurs mainly along
a percolating channel of exceptionally low energy valleys
with P ( 0. In this paper we examine a specific glassy
system, a Aux line moving in a two-dimensional random
potential, for which we demonstrate i/t

= 0.
The system we study is inspired by measurements

of nonlinear current-voltage (I, V) characteristics, V oc

exp( —const X I t"), of disordered superconductors in
a magnetic field [3]. There is an emerging consensus
that such behavior is best described in terms of low-
temperature glass phases [4,5]: In the weak current
regime, the dynamical properties are [4,6] dominated by
activated processes corresponding to bundles of Aux lines
overcoming pinning barriers. The principal difference
from the classical picture of fiux line motion [7] is
the power-law growth of barrier energies Fp ~ L~,
with bundle size L. The latter in turn diverges as
the superconducting current driving Aux flow decreases,
leading to nonlinear (I, V) dependence quoted above. As
accurate values of critical exponents characterizing vortex
glass phases (including P) are presently not available,
direct experimental confirmation or refutation of the

various theoretical models is difficult. The point of view
taken in many of the pioneering papers [6,8] on the
subject is that P = 0. Here we shall attempt to put this
assumption on a firmer basis.

We shall examine the configurations of a single flux
line (FL) in a random potential landscape. Equilibrium
properties of this system have been extensively studied
in the context of directed polymers in random media
(DPRM) [9]. It is known that the FL is pinned by
impurities into a glassy state. Furthermore, by using a
transfer matrix method, properties of this state can be
probed numerically in polynomial time in the line length
t. In two dimensions, e.g. , for a FL trapped between two
copper oxide planes of a high-T, superconductor, some
analytical information is also available. For example, the
fluctuations in the free energy at finite temperature scale
as t'~ . Since the scaling behavior of the pinned FL is
governed by a zero-temperature fixed point [8], energy
fluctuations scale in the same way. The availability of
such results and techniques make this system ideal for the
investigation of barrier energies.

The precise description of the model is as follows: The
FL is discretized to lie on the bonds of a square lattice,
directed along its diagonal. Each segment of the line can
proceed along one of two directions, leading to a total of
2' configurations after t steps. These configurations are
labeled by the set of integers ix(r)) for r = 0, 1, . . . , t,
giving the transverse coordinate of the line at each step
[clearly constrained such that x(r + 1) = x(r) ~ 1]. To
each bond on the lattice a (quenched) random energy
is assigned, equally distributed between 0 and 1. The
energy of each configuration is the sum of all random
bond energies on the line. Without loss of generality,
we set x(0) = 0. For each end point (t, x) with x =
—t, —t + 2, . . . , I, , there is a configuration of minimal
energy F;„(x~t) which can be obtained numerically in
a time of order t It is known th. at for ~x~ ( x,, oc t213

the function E;„(x~t) behaves as a random walk and
is thus asymptotically Gaussian distributed [8,9]. We
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next examine the energy barrier that has to be overcome
when the line is moved from an initial minimal energy
configuration between (0, 0) and (t, —xf) to a final one
between (0, 0) and (t, +xf).

The only elementary move allowed is Dipping a kink
along the line from one side to the other (except at the end

point). Thus the point (r, x) can be shifted to (r, x ~ 2).
Each route from the initial to the final configuration is
obtained by a sequence of such elementary moves. For
each sequence, there is an intermediate configuration of
maximum energy and a barrier that is the difference
between this maximum and the initial energy. In a system
at temperature T, the probability that the FL chooses
a sequence which crosses a barrier of height Fz is
proportional to exp( —Ett/T), multiplied by the number of
such sequences. We assume that, as is the case for the
equilibrium DPRM, the "entropic" factor of the number
of paths does not modify scaling behavior. Thus at
sufficiently low temperatures the FL chooses the optimal
sequence which has to overcome the least energy, and the
overall barrier is the minimum of barrier energies of all

sequences.
Since the number of elementary moves scales roughly

as the area between the initial and final lines, the num-

ber of possible sequences grows as t '. This exponential
growth makes it practically impossible to find the barrier

by examining all possible sequences, hampering a sys-
tematic examination of bamer energies. Rather than find-

ing the true barrier energy, we proceed by placing upper
and lower bounds on it. The lower bound was given in
Ref. [10] and scales as t ~ . In this paper, we present an
algorithm for obtaining an upper bound. Analytical argu-
ments suggest that this upper bound grows as t' pint,
thus establishing P = 1/3. Since these arguments do not
constitute a rigorous proof, we verify their validity by nu-

merical simulations. Computer time and memory require-
ments for the construction of this upper bound are happily
polynomial in t.

A lower bound for the barrier energy is obtained as
follows [10]: Since the end point of the path has to visit
all sites (t, x) with ~x~ ~ xf and since the energy of any
path ending at (t, x) is at least as large as E,„(x~t), the
barrier energy cannot be smaller than max[E;„(x~t)—
E;„(—xf ~t)] for x E [—xf, xf]. When xf is sufficiently
small, the probability distribution of this lower bound is
identical to that of the maximal deviation of a random
walk of length xf. The latter is a Gaussian distribution
with a mean value cc ~xf and a variance cc xf. This

growth saturates for xf of the order of t, leading to the
scaling behaviors

(E' (t, x)) = t' 'ft(x/t' '),
(1)

var(E ) = t f2(x/t ~3)

for the lower bound and its variance. The functions f t (y)
and f2(y) are proportional to ~y and y for small y,
respectively, and go to a constant for y = Q(I). Our
simulation results for systems with I, = 256, 512, 1024,
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FIG. 1. Scaling functions f~(y), f2(y), g~(y), and gq(y) [see
Eqs. (1), (4), and (5)] for the mean and variance of the
lower and upper bounds, averaged over 2000 realizations of
randomness, for t = 256 (solid), t = 512 (dotted), t = 1024
(dashed), t = 2048 (long dashed), and t = 4096 (dot-dashed).

2048, and 4096 confirm this expectation. Figure 1 shows
the scaling functions f~(y) and f2(y) for different t, and
the collapse is quite satisfactory. However, the initial
growth oc Jxy is not clearly seen at these sizes.

To obtain an upper bound for the barrier, we specify
an explicit algorithm for moving the line from its initial
to its final configuration. This is achieved by finding a
sequence of intermediate steps. It is certainly advanta-
geous to keep the intermediate paths as close to minimal
configurations as possible. We first attempt to move the
path in steps from a minimal configuration with end point
at (t, x) to one with end point at (t, x + 2), starting at
(t, —xf) and ending at (t, xf). At each step, we obtain
a local barrier path that separates two neighboring mini-
mal paths. The overall barrier is of course the one with
the highest energy. While it may occasionally be pos-
sible to go from one optimal path to a neighboring one
in a single elementary move (as defined above), this is
generally not the case. Minimal paths with neighboring
end points may be quite far apart at coordinates 7. ~ t.
The reason is simple: suppose the random potential has
a large positive fluctuation, a "mountain. " The minimal

energy paths will then circumvent this region by going to
its right or left. The last path going to the left and the
first one going to the right have almost the same energy
(these energies are strictly equal in the continuum limit).
They form a loop which can be quite large and is likely
to enclose the barrier when both paths separate already at
small r. Such loops have been conjectured [4,6] to play
an important role in the low-temperature dynamics of the
DPRM. Since the transverse fluctuations of a minimal
path of length t grow as t, we expect the lateral size of
these loops to also be of this order.

The algorithm for moving a line of length t = 2 from
a minimal configuration {x~(r)) to another one (x2(r)),
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with x2(t) = xi(t) + 2 is as follows: If x2(r) ~ xi(r) +
2 for all r, we can choose a sequence of elementary
moves such that at most two bonds of the line are not on
one or the other minimal path, leading to a barrier of order
1 between the two. If xz(r) ) xi(r) + 2 for some r, the
two paths enclose a loop. We then consider the midway
points (t/2, x) with xi(t/2) ( x ( x2(t/2). For each of
these points, we find two minimal segments of length t/2
connecting on one side to (0, 0) and on the other to either
(t, xi(t)) or (t, xz(t)) [11]. The two segments form an
almost minimal path of length t, constrained to go through
the point (t/2, x). We next move the line ix)(r)i stepwise
through this sequence of almost minimal paths. At each
step we first attempt to move the upper segment and then
the lower one [12]. The prescription for moving these
segments of length t/2 is exactly the same as for paths
of length t: If the distance between two consecutive
configurations is larger than 2 for some r E [0, t/2],
we consider the points at (t/4, x) in between the two,
and find minimal paths of length t/4 connecting them
to the initial and final points. Next we attempt to move
segments of length t/2 by repeatedly moving line portions
of length t/4. In some cases, when the energy barrier
is high, it is necessary to proceed with this construction
until the cutoff scale t/2" = 1 is reached. Thus, at each
intermediate configuration, the line is composed of one
minimal segment of length t/2, one of length t/4, etc. ,

ending with two smallest pieces of length t/2 (equal to
1 in the worst case). The barrier paths resulting from this
construction, and the minimal paths separated by them,
are shown in Fig. 2.

We now estimate the barrier energy resulting from the
above construction. Each intermediate path is composed
of segments of minimal paths with constrained end points,
and we would like to find the probability distribution
for the highest energy. Constraining the end points of
a minimal path of length ~ typically increases its energy
by E (r) ec r') . A subset of these intermediate paths
(those that cross the largest mountains) have constraints

FIG. 2. Minimal paths of length t = 256 to end points between
x = —96 and x = +96 (solid) and the barrier paths between
them (dotted).

imposed on segments of length t, t/2, t/4, and all the
way down to unity. The number of paths in this subset
(henceforth referred to as candidate barriers) grows as
N, (t) oc t, with 1 & n ( 1 + 2/3. The lower limit
comes from noting that at each bisection of a loop
several new large loops are generated, at least one in the
upper and one in the lower half of the parent loop, thus
N, ~ t. The upper limit comes from the total number of
intermediate steps that grows as txf. The energy of each
candidate barrier path is obtained in a manner similar to
that of the lower bound: Instead of finding the maximum
of a random walk of length xf tx- t, we now have to
examine the sum of the maxima for a sequence of shorter
and shorter random walks added together. The mean
value of this sum is related to the convergent series

(E,(t)) = (E (t) + E (t/2) + E (t/4) + . .) = (E (t)) 1+ 2 ' + 2 + . + A

=(E (i)) i —2 '
) '+4=4 85 (E (t))+A. . .. . (2)

The constant A in Eq. (2) accounts for the breakdown
of the scaling form of the energy increase for small loops.
The mean angle of the smallest loops (of size t = t/2 )
approaches the 45 limit; their mean energy growing as

2/30.5t . For the larger loops, the angle tm /t is small and
the energy is 0.23t . A finite value of m acts as a cutoff
separating the two limits. The energy difference per unit
length between small and large paths then leads to the
additive constant A (of the order of unity) in Eq. (2).

The barrier energy is the maximum of the N, (t) en-
ergies of all candidate barriers. To find its characteris-
tics, we need the whole probability distribution for the en-

ergy E, (t). Since E, is the , sum of energies coming from
its minimal segments, the simplest assumption is to re-
gard the segment energies as independent, approximately
Gaussian, random variables. We then conclude that E,(t)
is also Gaussian distributed with a variance

var[E, (t)] = var[E (t)] + var [E (t/2)] + .

= 2.70... var [E (t)] ec t i (3)
Since the different segments are in fact constructed
through aspecific recursive procedure, their independence
cannot be justified. Thus the statements of the Gaussian
nature of E,(t) and the variance in Eq. (3) should be
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regarded as plausible assumptions that appear to be
supported by the numerical simulations.

It can be checked easily that (for large N) the maximum
of N independent Gaussian variables of mean a and
variance cr is a Gaussian of mean a + o Q2 lnN and
variance crz/(2 lnN). Since the N, (t) candidate barriers
have large segments in common, their energies are not
independent. We can approximately take this into account
by assuming a subset of them as independent, leading to
N ~ t for some n' ~ ~. We thus obtain the following
estimates for the mean upper bound in barrier energy:

(E+(x, r)) = (E,(x, l)) + 2 lnNvarE, (x, t)
= (1 + Pglnr)t' gi(x/t ),

and its variance,
E2/3

g.(x/r"'). (5)
lnt

var [E,(x, t)]
var[E+(x, r)] =

2 ln%

The functions gi (y) and gz(y) are proportional to ~y and

y, respectively, for small y, constant for large y, and, in
general, different from that of the lower bound.

Our numerical simulations indeed confirm the above
scaling forms. The scaling functions gi(y) and g2(y) are
plotted in Fig. 1 for different values of t, after averaging
over 2000 realizations of randomness. The Qln(t) factors
are essential, as a comparable collapse is not obtained
without them. In fact the best fit by (E+(t)) is obtained
by including the correction to scaling factor 4.85(E (t)),
and with P = 1. The numerics therefore support the
neglect of correlations, and the assumption of a Gaussian
distributed E,(t). As in the lower bound, the initial
scaling oc ~xy is not clearly seen for the sizes studied.
Since the leading power for the scaling of the lower and

upper bounds is identical, we conclude that the barrier
energies also grow as t'l . (It remains to be seen if the
logarithmic corrections are truly present, or merely an
artifact of our algorithm. )

We now return to the original question of the response
of a flux line to an external force, which in the context
of superconductivity is proportional to the supercurrent
I. The standard argument [4,6] assumes an exponential
dependence of the net velocity on the typical barrier
height. However, it is quite possible that the overall
response of the system is determined by the largest
rather than the typical barriers. If so, knowledge of the
probability distribution of energy barriers is important.
For example, it may be more appropriate to average
the waiting time for the activated jumps over barriers,
7 ~ exp(E&/T). Assuming a Gaussian decay in the
tail of the barrier heights, the latter average, [r]„oc
JdEp e ' P(Eii), is dominated by energies Eii oc g&,
with p = 2' = 2/3. More detailed considerations of
such issues will be taken up in future publications [13].

In conclusion, for the simple example of a DPRM, we
have shown that fluctuations in the minima of the energy
landscape and the barriers between them both scale with
the length of the line as t' . It remains to be seen if

the upper bound can be further improved upon and placed
on a more firm analytical basis. These results provide a
glimpse into the complexity of the free energy landscape
of glassy systems.
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Note added. —After submission of the manuscript we
learned of similar methods being developed by A. Mid-
dleton. One of us (B.D.) succeeded in generalizing our
algorithm to a FL in three dimensions, again confirming

P = 0 (see [14]).
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