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We examine various issues relevant to localization in the Anderson model.

We show there is

more to localization than exponentially localized states by presenting an example with such states but
where (x(1)?)/1>"? is unbounded for any § > 0. We show that the recently discovered instability of
localization under rank one perturbations is only a weak instability.

PACS numbers: 72.15.Rn

Localization in random media is basic to a variety
of physical situations. We wish to report here on a
number of rigorous mathematical results that shed light on
the phenomenon of localization in the Anderson model.
Mathematically complete proofs of our results will appear
elsewhere [1]. Our goal here is to describe the ideas
behind the results.

Throughout, we will consider the Anderson model, that
is, the Hamiltonian H, on €%(Z%) (namely, on the d-
dimensional cubic lattice)

(Hou)(n) = D uln + j) + Vo(mu(n), (1)

Ljl=1

where the potentials V,, are identically distributed inde-
pendent random variables with distribution [2]

1
20 X[—n.m1(x) dx,

with x[-y, 5] the characteristic function of the interval
[—7. 7]

Many of the claimed proofs of localization show that,
for almost all w, an Anderson model Hamiltonian H,, has
a complete set of normalized eigenvectors [3] {@ e, m}m=1
obeying

Iﬁpw,m(n)l = Cw,meiAln_”w,ml’ (2)

where A is fixed, the n, ,’s are some centers of localiza-
tion, and the C,, ,,’s are constants depending on « and m.

Our first result is an example that shows that mere
“exponential localization” of eigenfunctions in the form
of Eq. (2) need not have very strong consequences for the
dynamics. We can construct a nonrandom potential V in
one dimension with the following: (i) H has a complete
set of normalized eigenvectors obeying Eq. (2). (ii) Let
(x2) (¢) denote (e~ "H &y, x?¢ " §,); then for any & > 0,
(x%(¢))/t*>7% is unbounded as r — *oo [4].

The potential V for this example is

0031-9007/95/75(1)/117(3)$06.00

V(n) = 3cosQRman + 6) + Ad,0,

which we consider on the positive half of the lattice (n =
0), with a Dirichlet (or any other) boundary condition at
the origin. The 3 in front of the cosine can be replaced
by any number larger than 2, and is chosen so that when
A = 0 the problem has a positive Lyapunov exponent [5].
The « is an irrational, which is specially chosen so that
for suitable time scales 7,, — %, V is so close to periodic
that we can show (x?(T,)) is large compared to 7279,
The local perturbation Ad,o pushes the spectrum to be
pure point and forces Eq. (2) to hold.

While V is very far from random, it illustrates that
Eq. (2) is not enough to restrict dynamics. The main
failing in (2) is the total freedom given to the constants
Cw m- Indeed, when one thinks of “localization,” one usu-
ally thinks of the eigenvectors as being confined, at least
roughly, within some typical length scale. If the C, ,,’s
are allowed to grow arbitrarily as m changes, it means that
eigenvectors are allowed to be “extended” over arbitrarily
large length scales. We have shown that a correct con-
dition, which does give correspondence between eigen-
vector localization and dynamical localization, is what we
call semiuniformly localized eigenvectors (SULE): There
are sites n, , so that for each € > 0 there is C, . for
which

l@wm(n)| = Cw,feelnm,mle*AIn*n.,,MI. (3)

Condition (3) says that the constants C,, of (2) are
allowed to grow at a rate which is less than exponential
in the distance of the n, ,’s from the origin. SULE is
closely related to a dynamical condition, which we call
semiuniform dynamical localization (SUDL)

sup |e "o (n, 0)| = C‘w,eed“e*;‘l’“”. 4)
t

We haxie proven that (3) implies (4) with A arbitrarily
close to A, and that if H, has simple eigenvalues [6],
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then (4) implies (3) with A = %Zl [7]. Condition (4)
is sufficient to show that (x2(¢)) (or any other positive
moment of x) is bounded. By standard probability
arguments, (4) is implied by

E(suple_”H“(n,€)|> = Ce Aln—tl, 5)
t

where E(-) denotes expectation over realizations. Condi-
tion (5) has been proven by Delyon, Kunz, and Souillard
[8] in the one-dimensional case and by Aizenman [9] in
multidimensional cases at large coupling [10].

A priori, one may wish to consider a more restrictive
condition than (3), which is to consider (2), but with C,
independent of m instead of C,, ,,. We call this condition
uniformly localized eigenvectors (ULE). Indeed, ULE is
related to the dynamical condition [which we call uniform
dynamical localization (UDL)]

sup |e "o (n, €)] = (:’a,ef;’l”_(fI (6)
t

in essentially the same way that SULE is related to
(4). The problem is that ULE does not occur: We
have shown [1,11] that ULE cannot occur for a large
class of models, and, in particular, it cannot occur
for the Anderson model in any dimension. It is an
open question, in fact, whether there is any Schrodinger
operator with ULE. The Maryland model [12], which
has an unbounded quasiperiodic potential, exhibits a
weak form of ULE in the sense that for any finite
energy interval there exists a uniform constant for all
eigenvectors with energies in this interval. The almost
Mathieu operator [13], however, does not have ULE
[1,11]. For the Anderson model, or any other random
Hamiltonian obeying Eq. (5), one can actually show
stronger uniformity than what is given by Eq. (3). That is,
one can get an explicit (dimension dependent) polynomial
bound on the growth of the C, ,’s. Our definition of
SULE by (3) attempts to get, at least roughly, a minimal
uniformity requirement that would still have a two-way
relationship with corresponding dynamical localization.

Our second set of results concerns the following dis-
covery of Gordon [14] and del Rio, Makarov, and Simon
[15]: Let H, be an Anderson Hamiltonian in the localized
regime and let [16] H,(A) = H, + A|0){0]. Then for a
set S of couplings A, which is dense and locally uncount-
able [17], H,, (A) has a purely singular continuous spectrum
[18]. In particular, for A € S,{x2(¢)) is unbounded [19].
So, the strong dynamical localization discussed above can
be destroyed by an arbitrarily small perturbation of the po-
tential at a single point; a disturbing fact.

We have found [1] that this instability is a mild one
in the following senses: (i) For all A, (x2(¢)) = C(In|t])?
for ¢ large. (ii) The spectral measures in the singular
continuous case are supported on a set of zero Hausdorff
dimension [20]. In fact, this follows from (i) by a result
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of Last [21], which is based on ideas originally due to
Guarneri [22]. (iii) S is contained in a set of coupling
constants S so that § has zero Hausdorff dimension, and
so that if A & §, H,,(A) has pure point spectrum.
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