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Microwave-Induced "Somersault Effect" in Flow of Josephson Current through a
Quantum Constriction
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We consider the supercurrent How through gated mesoscopic semiconductor heterostructures in which
a two-dimensional normal constriction is confined between superconducting electrodes. Photon-assisted
Landau-Zener transitions between Andreev bound states in the constriction are shown to give rise to
(i) a series of reversals in the direction of supercurrent liow (somersault effect) if the phase difference
between the superconducting elements is fixed or (ii) a series of voltage spikes if the junction is current
biased. We discuss necessary conditions for the described phenomena to be experimentally observable.

PACS numbers: 74.50.+r

The Josephson coupling between two superconductors
is associated with charge transfer through the nonsuper-
conducting region that separates them. The coupling is
therefore determined in a crucial way by the nature of the
electron states in this region. Quantum mechanical tunnel-

ing through an insulating barrier superconductor-insulator-
superconductor (SIS junction) [1],itinerant propagation of
free electrons through a normal region [superconductor-
normal-superconductor (SNS)] [2], and propagation of
plasma waves (boson modes) through a 1D channel of
strongly correlated electrons [3] are examples of charge
transfer mechanisms in different types of weak links.

The electron states carrying the supercurrent in the non-
superconducting region can be influenced by an external
time-dependent field. This possibility raises interesting
questions on the nature of Josephson coupling due to
nonequilibrium electron states. This is the problem ad-
dressed here.

Nonequilibrium effects can be expected to be par-
ticularly important in situations where the Josephson
coupling is mediated by a normally conducting micro-
constriction, where only a few electron states —Andreev
bound states —carry the current. Weak links through bal-
listic microconstrictions in the two-dimensional electron
gas of gated semiconductor heterostructures have recently
been observed experimentally [4]. An important feature
of this structure is that the electron energy levels in the
constriction can easily be influenced by applying a poten-
tial to the gate electrodes. In this way the electron con-
centration (and hence the Fermi wave vector, kF) in the
channel can be controlled. The potential due to induced
charges on the gate electrodes, furthermore, provides a
mechanism for coupling the 2D electrons to an external
electromagnetic field.

The geometry of the system to be considered in the
following is shown in Fig. 1. The Josephson coupling
between two superconductors can be expressed in terms
of the phase difference @ between their respective order
parameters. We will first consider this phase difference

to be a fixed quantity, which in a SQUID geometry can
be controlled entirely by the magnetic flux (see inset of
Fig. 1). Andreev reflection at the boundaries between su-

perconducting and normal regions in a SNS configuration
is known [5] to lead to a discrete set of energy levels
within the energy gap of the superconductors. Because of
spatial quantization in the transverse y direction, the en-

ergy spectrum of the Andreev bound states in a narrow
and short constriction consists of a discrete set of pairs of
levels labeled by the quantum number n [6],

E„~ = ~A 1 —T„(k~) sin~(p/2) . (1)
Energy is measured from the Fermi level, and the trans-
mission eigenvalue T„(kF) is related to the propagation of
normal Fermi level electrons through the junction (along
the x direction). For a short junction all of the Joseph-
son current is carried by these Andreev states. It is im-
portant to note that states below (E„)and above (E„+)
the Fermi level carry current in different directions. In
Fig. 2(a), the position of a pair of levels E„ is indicated,
and the directions of the corresponding partial currents are
marked by arrows. The dashed arrow for the state E„+
above the Fermi energy illustrates that this state is unoc-
cupied at zero temperature and hence does not contribute
to the total current.
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FIG. 1. Sketch of a gated semiconductor heterostructure in
which a two-dimensional normal constriction is confined be-
tween superconducting electrodes. Inset: The phase difference
between the two superconductors can be kept constant in the
SQUID configuration shown.
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FIG. 2. Microwave induced transitions and currents carried
by the Andreev levels in the normal constriction of Fig. 1

during a slow drift of the levels through resonance: (a) before
reaching the resonance; (b) during the resonance; (c) after
passing the resonance. Arrows show the direction of current,
dashed arrows correspond to unpopulated level.

We shall consider a situation where a gate-induced
time-dependent potential is a sum of one part Vo(t), which
varies slowly on a scale related to the interlevel spacing,
and another rapidly oscillating part V cos(cot), where
~ is of the order of the interlevel spacing. The high-
frequency component of the induced potential produces
interlevel transitions, which result in a strong coupling
of pairs of Andreev states at resonance [7]. Because of
the change in the interlevel distances resulting from a
slow time variation of kF, the condition for resonance,
~u = cu p = (F —Ep)/6 (n = n, ~), can be met for
any pair of levels at some time t = t„, even if they are
out of resonance with the electromagnetic field at t = 0,
when the potential is switched on. Such a drift into and
out of resonance is illustrated in Fig. 2, where panel (a)
shows a nonresonant configuration. When the two levels
drift into resonance, as in Fig. 2(b), resonant interlevel
mixing results in a finite population of the upper level
and a corresponding contribution to the partial Josephson
current in the reverse direction.

If the Andreev levels pass slowly enough (see below)
through the resonance, the result of the dynamic evolution
is a complete depopulation of the lower level. Hence,
as the levels drift out of resonance the Josephson current
has been turned around and the current is Aowing in
the opposite direction [Fig. 2(c)]. After some time out
of resonance, the system relaxes back to its ground
state and the Josephson current returns to the forward
direction. The microwave-induced "somersault" has been
completed.

To discuss the above effects quantitatively we begin
with the time-dependent Bogoliubov —de Gennes (BdG)
equation;

i h&(r, t) = [H + V(t)] W(r, t) . (2)

Here H is the standard Hamiltonian both for the nor-
mal electrons in the microconstriction part of the device
~x~ & L/2 (see Fig. 1) and for the electrons in the super-

conducting regions, ~x~ ) L/2. The length of the junc-
tion I. is assumed to be small in comparison with the
coherence length ss = vF/5 (vF is the Fermi veloc-
ity in the constriction). The normal electron Hamilton-
ian includes an electrostatic potential that confines the
electrons in the transverse direction and also describes
the normal scattering from impurities and from the bar-
riers at the Sm-S boundaries. The spatial variation of
the superconducting order parameter due to the proxim-
ity effect is small and can be neglected, since the width
of the constriction is much smaller than the supercon-
ductor coherence length $s [8]. Hence, we use a step-
function model for the pair potential, 5(r) = 50 (~ x ~—
L/2) exp[i sgn(x) @/2]. The time-dependent potential,
V(t) = [Vr)(t) + V„cos set]o, O(L/. 2 —~x~), where o,
is a Pauli spin matrix, is confined to the normal region and
does not mix the electronlike and holelike components
of the wave function W. If its high-frequency part V„
is absent, the only effect of the external time-dependent
field V(t) is an adiabatic energy shift of the Andreev
levels caused by the parametric dependence of E on
kF = ((2m/6 ) [p, —Vo(t)])'/ [see Eq. (1)]. If the field
has a finite high frequency component, different Andreev
states are mixed due to interlevel transitions described
by the matrix element V p

= V (W (r), o.,H(L/2—
~x~)%p(r)). In what follows we will consider the weak
coupling limit V p (( h~ p, in which almost all An-
dreev states are only slightly renormalized by the electro-
magnetic field. The exception is when the condition for
resonance between two states, cu = ru p(t), is fulfilled at
some time t = t„,. At resonance the interaction with the
field cannot be treated perturbatively. Rather one must
make the resonant approximation by finding a solution to
the BdG equation (2) that is a mixture of the two adiabatic
states, & (r) and Wp(r), in resonance:

tp e(r, t) = exp( —i/2R (Lt (t) + tte(t))dt l

[b1~ ( )
1'(ttt/2)( + b2~ (r)e

—t'(td/2)(]

(3)

Here the index s = 1, 2 labels independent solutions
corresponding to different initial conditions, b,"(t = 0) =
6, „. After substituting the wave function (3) into the BdG
equation (2) and averaging over the fast oscillations, we
readily find equations which describe the time evolution
of the coefficients b,' . Introducing a vector coefficient
b, (t) we get

Bo) p(t) V pib, (t) = (7, + hard + H.c. b, (t),
2

(4)

where 6~ p(t) = cu p(t) —cu && ct2 and (7+ = ((7, +
io~)/2, o., Y being Pauli spin matrices. A problem simi-
lar to Eq. (4) was first discussed by Landau and Zener in
connection with molecular predissociation [9,10] (see also
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[11]). It follows from their theory that the asymptotic so-
lution of (4) valid at t » r„, is Ib,"I = W p + 6„,(1—
2W p). The probability W p for the system to be in a
different state after passing through the resonance,

W = 1 —euP

y.p
= Iv.~/zl I~.~(r„„)I-' ', (s)

is determined by the product of the interlevel transition
frequency IV pI/R and the characteristic time Bt„, =

p(t„,)I '~ the system spends on resonance. If the
characteristic time is long, y » 1 (6t„„»6/V p), we
have Ib,"I = 1 —6„, and the transition between modes
u and P is complete.

In the absence of relaxation, the Josephson current
is solely determined by the dynamic evolution of the
electron-hole wave function N(r, t) discussed above. Be-
fore the high-frequency field is switched on, the Andreev
levels are in equilibrium and the Josephson current has its
equilibrium value Io. The deviation of the time averaged
current, 6I = I —Io, is found using the asymptotic result
for the coefficients b,'(t):

6I = g W p(n —np) (Ip —I ), (6)
I~ P)-s

where 1 p
= (2e/h)dE p/d@, and n p is the Fermi

function, n p
= nF(F p). The summation in (6) is over

pairs of levels, (n, P)„„which have passed through a res-
onance [12]. As we can see from Eq. (6) only transitions
between states with energies of opposite signs (the Fermi
level is at zero) contribute to BI. If the Josephson current
through the channel is carried by a single pair of Andreev
levels, the direction of the Josephson current is reversed
for W ~ 1/2. Of course, for t && t„, there is no reso-
nant coupling with the electromagnetic field to maintain
the inverse population. Any inelastic relaxation mecha-
nism will bring the system back to its equilibrium state
and restore the original direction of Josephson current.
This process of dynamically switching on the inverse pop-
ulation of Andreev states and the subsequent inelastic re-
laxation manifests itself as a somersault of the Josephson
current.

Equation (6) is significantly simplified if the micro-
constriction joining the two superconductors is an adia-
batically smooth ballistic channel with quantized energy
levels (modes) corresponding to the transverse electron
motion. In this situation each propagating mode pro-
duces one pair of Andreev levels of the type (1)—one
level above and one below the Fermi energy —and the
transmission eigenvalue T reduces to the normal electron
transmission coefficient of the nth mode,

4R
T„(kF) = 1 + sin (k„L), (7)

where k„= kF —vrzn2/d2, and R is the probability
for electron backscattering at the Sm-S boundary. The
electromagnetic field couples levels only within these

pairs, i.e., if o. = ~ one has V = 6„„6 V„and
consequently cu = 6„„6 cu„. The matrix element
V„has the form

, L', R cos'(k„L) sin' P
"(1 —R)2 1 —T, sin (P/2)

8

In the ballistic case the total current at zero temperature,
taking into account Eq. (6), can be written in the form

I = QI„(1 —2W„), (9)
n

where the summation is formally done over all transverse
modes and W„ is assumed to be zero for those Andreev
levels which have not passed through a resonance.

As one can see from Eq. (8), the electromagnetic field
can only mix Andreev states if the probability for elec-
tron backscattering at the Sm-S boundaries is finite. A
somersault which changes the total momentum of the
system can evidently only occur if backscattering is pos-
sible. It is interesting that if there is a geometric reso-
nance, k„L = n~, the somersault effect still takes place
according to (6) even though the microconstriction is fully
transparent for electrons in mode n, T„(kF) = 1. This
fact provides an important possibility of distinguishing
between resonant transmission through the double barrier
structure and ballistic propagation in the absence of nor-
mal backscattering from Sm-S boundaries.

It is also interesting to consider the case when there
is no drift with time of the Andreev levels, i.e., when
Vo(t) = 0. A permanent resonant coupling of Andreev
states is now possible and leads to an equalization of the
average level population [13]. Solving equations (4) we
find a result for the Josephson current that deviates from
its stationary value:

I = I, I'" I

. 10"QS~2 + (2V„/Z)2

In particular, we find that resonant coupling, i.e., when
6', = 0, results in a complete blockade of the Josephson
current. This phenomenon can be observed as a sequence
of dips if the Josephson current is plotted as a function of
the frequency of the electromagnetic field. The number
of dips should equal the number of propagating modes
in the ballistic constriction, and the dip amplitude should
equal the single mode contribution I„ to the stationary
Josephson current.

In the discussion so far we have assumed that the
phase difference between the two superconductors is
constant in time. For the somersault effect to develop
as described above, it is necessary that P be fixed
to a high degree of accuracy, otherwise the system
will escape from resonance. This fact implies that the
change of the interlevel distance due to the phase shift
6 @ should be smaller than the nonlinear resonance
width: R(Bcu p/BP)6$ ~ V p. In our estimation 8@—
(5/gs)(1/Nz), where 2 is the ring length, gs is the
superconductor coherence length, and Nq is the number
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of transverse modes carrying the Meissner current in
the superconducting ring. The criterion for the phase
difference to be stable enough to observe the resonance
is thus (V t3/A) L/ E ~ I /N q.

When the Josephson junction is connected to a
current source, the current rather than the phase dif-
ference is held constant. In this situation another
interesting phenomenon occurs; the somersault effect
causes phase slips at times when Andreev levels are
resonantly coupled. The phase slips in turn manifest
themselves as voltage spikes. The characteristic time
scale of a phase slip is determined by the Josephson
plasma frequency cuJ = [(A/h) (I/RoCJ)]', which for
the geometry of Fig. 1 and Ro = 6/e can be written as
cuJ = (A/6) (gsL/d )'tz. This relationship allows us
to estimate the amplitude and the duration of the voltage
spike as U = (h/2e) @ —(JI /e) ru I and At —I/&0 I, re-
spectively, in the case where the duration of the interlevel
transition, 6t„„,is shorter than At, i.e., if I/ruq » Bt„„.
In the opposite case, I/cuJ « Bt„„amore complex
analysis of the joint dynamics of the phase and interlevel

4/3
transition gives the estimates U —V p/eA' and

At —h/V p
A't .

The somersault effect discussed above relies on the
preservation of phase coherence during the dynamical
evolution of the Andreev states and the redistribution
of level populations at resonance. This implies that the
phase breaking time ~ associated with inelastic relaxation
should be the largest time scale in the problem:

I/cu &
—6/A «JI/V p «Bt„,« ~,

I/ruJ (( 7

Since the main part of the Andreev state wave function
is localized in the superconducting electrodes, the most
important relaxation mechanisms are recombination pro-
cesses due to electron-phonon interaction in the supercon-
ductors. According to Ref. [14] a typical estimate of the
recombination time in a superconductor is rA/II & 10z.
This value makes it possible to fulfill the inequalities (11)
in a device with normal region length L = s s if the am-

plitude V„ is of the order of 10 mV. Meanwhile, an am-
plitude of the voltage spikes in a current biased junction
is of order of 1 —10 mV.

In conclusion, we have shown that a microwave elec-
tromagnetic field can drastically change the Josephson
current carried by quantized modes in a mesoscopic con-
striction, giving rise to sequential reversals of the current
in a phase biased junction and to voltage spikes in a current
biased junction. While it may be difficult to measure the
reversal of current directly, the voltage spikes are a differ-
ent matter. Even though the considerable impedance mis-
match between our device (=10 kA) and a high-frequency

amplifier (=50 0) will reduce the signal by a factor of
100 to, say, 50 p, V, the noise level of low noise cooled
microwave amplifiers available today is an order of mag-
nitude lower (see, for example, [15]). Observation of the
somersault effect, which hence seems to be possible in cur-
rently available gated semiconductor heterostructure de-
vices, would be a direct manifestation of the discrete nature
of the Josephson current in a quantum constriction.
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