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It is shown that layered superconductors are subjected to a phase transition at zero temperature
provided the order parameter reverses its sign on the Fermi surface but its angular average is finite.
The transition is regulated by an elastic impurity scattering rate 1/r The .excitation energy spectrum,
being gapless at the low level of scattering, develops a gap as soon as the scattering rate exceeds some
critical value of 1/r. .

PACS numbers: 74.20.I g, 74.25.Jb, 74.62.—c, 74.72.Bk

It has been shown recently that nonmagnetic impuri-
ties may destroy the d-wave superconductivity in the same
manner as magnetic impurities do it in the s-wave conven-
tional superconductors [1—3]. However, this pure d-wave
scenario is not supported by the existent experimental data,
at least in YBaCuO samples, subjected to radiation dam-
age or doping [4]. One might anticipate that T, should
drop abruptly above a certain critical concentration of the
defects. Instead, the critical temperature has been found
just to decrease gradually in the whole range of a resid-
ual resistivity variation. The above discrepancy has been
considered as a compelling counterargument against the
whole idea of exotic pairing in this compound. However,
in this Letter we make the case that the above-mentioned
experimental results do not, in fact, contradict the alleged
nontrivial structure of the order parameter (OP), provided
the latter is determined by the symmetry of the crystal and,
hence, deviates from the exact d-wave form. In this situ-
ation, as will be demonstrated below, an initially gapless
excitation spectrum of a clean superconductor may acquire
a gap due to a scattering of electrons by nonmagnetic im-
purities. An elastic scattering gives rise t.o this paradoxi-
cal effect, once the OP in the clean material possesses the
nodes on the Fermi surface, whereas its angular average
still does not vanish, and the scattering rate exceeds some
critical value.

The results of recent Josephson tunneling experiments
[5] and the measurement of critical temperature versus
residual resistivity variation [4] may be interpreted as an
evidence in favor of this very structure of the OP. Indeed,
the Josephson tunneling data in the corner geometry imply
the sign reversal of the OP on the Fermi surface. On
the other hand, as already mentioned, the growth of the
residual resistivity is accompanied by a slow decrease of
critical temperature. This type of behavior rules out the
nullification of the OP averaged over the Fermi surface as
we shall show later.

It should be noted that recent measurements of a
Josephson current in the c direction by Sun et al. [6] do

not conform easily with the phase alternating OP. The
values of the net current found in this experiment for the
heavily twinned samples in plain geometry are several
orders of magnitude higher than theoretically estimated.
The interpretation of these results may prove to be a
subtle matter, however. A possible source of the finite
Josephson current could be a symmetry violation caused
by surface defects and the surface itself together with
the phase self-adjustment. For other plausible scenarios
on this effect see Ref. [7]. For now we assume that the
OP sign reversal, as well as the nonzero value of (6&, is
reliably established in the experiments cited above [4,5].

We analyze the problem in the framework of the
anisotropic BCS model. The OP is determined by the
self-consistency equation

Here the summation goes over the Matsubara imaginary
frequencies, whereas the integration is restricted to the
Fermi surface, which is presumed to be a cylinder. The
kernel V(@,P') describes the interaction of electrons on
the Fermi surface. The renormalized Matsubara frequency
g„and the frequency-dependent OP 5„(@)are related to
the corresponding bare quantities g„= (2 n + 1)~T and

5(@)via the Abrikosov-Gor'kov (AG) equations

(2)

The angular brackets in the AG equations denote the
angular average. For the sake of simplicity we consider
isotropic scattering only. For the same reason we have
disregarded any dependence of the OP and the electronic
interaction potential on the c component of momentum.

Let us first examine the behavior of the critical tempera-
ture with respect to the variation of the scattering rate. In
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the vicinity of critical line Eqs. (1)—(3) may be linearized
and the infinitesimal order parameter may be eliminated.
The result reads

1 = g(T, ~)([1 —f(T, r)V] 'V(@)). (4)
Here we defined a linear operator V related to the electronic
interaction kernel

VP(y) = V(y, @')y(@')
2

This operator maps 1 onto the function V(@)

v(y) = , d
V(4. 4')

2

The functions f(T, ~) and g(T, r) in Eq. (4) are defined by
the following expressions:

1
f(T, r) =Tg

I I+ I/

1~ ln. l (1 + lg. l~)

The summation in the expression for f(T, ~) is limited

by an ultraviolet cutoff, g, ( e. The latter is related to
the critical temperature T,o of the clean superconductor as
follows:

T p
= (2yB/7T) exp( —n/'Vp), (9)

where Vo is the maximal eigenvalue of the operator V and

y is a logarithm of the Euler constant. In the dirty limit
(T p (& I/r) the approximate solution of Eq. (4) reads

T, = (2ye/~) exp( —~/(V)) (e7.) ', (10)
where ~ = (V )/(V) . Within the same approximation
5(@) ~ V(@). Hence, the exponent sc may be expressed
in terms of the OP: v = (5 )/(5) . The power law (10)
has been derived by Hohenberg [8] under the assumption
of a weak anisotropy. We have found that it is the high
scattering level that really matters. Notice that the expo-
nent ~ becomes infinite when (5) ~ 0. A more scrupu-
lous analysis [1—3] shows that if (5) = 0, the critical
temperature vanishes at some finite scattering rate propor-
tional to the critical temperature of the clean superconduc-
tor, I/r, = 2yT, p/vr.

Equation (10) might be interpreted directly as the
relation between the critical temperature and the residual
resistivity, r, (p) ~ p ', provided that the effective
number of carriers does not depend substantially on the
concentration of defects.

Let us study Eqs. (1)—(3) at a temperature equal to zero.
In this case the summation in Eq. (1) should be replaced by
integration over the continuous variable g, and the domain
of functions fj(g) and A(P, g) extends into the whole
positive half axis of the same variable. We are interested in
the behavior of the above functions at g ~ 0. The values
i1 (0) and 5(@,0) determine the density of states (DOS) on
the Fermi surface, vanishing if fj(0) = 0.

We are going to prove the following three statements
concerning the DOS on the Fermi surface: (1) Let

(6(@))4 0 and A(P) does not change its sign on the
Fermi surface. Then f1 (0) = 0 for any w. (2) Let
(5(@))= 0. Then g(0) ) 0 for any I/r ~ I/~, =
2y T,p/7r. (3) Let (A(cb)) 4 0 but 5(@) is a sign
alternating function of the angle P. Then g(0) = 0 for
I/~ & I/r„but g(0) & 0 for I/~ & I /7, The equation
for r„as a functional of A(P) will be derived below.

Before proceeding to the proof let us remark that
according to Eq. (2) the following separation of variables
takes place:

~(4, n) = ~(4) + ~(n),
and the AG equations may be rewritten in terms of the
function o.(g) just defined:

~(n)
( )

(13)

The first proposition stems from Eqs. (12) and (13)
straightforwardly. Indeed, let g(0) 4 0, then the average
(denoted by angular brackets) on the right-hand side
(rhs) of Eq. (13) must vanish at rj = 0. The latter is
impossible, however, if 5(@) does not reverse its sign.
Hence, even if 5(@) has nodes but is non-negative in
the whole domain 0 ~ @ ( 27' (the case studied in [3])
rI(0) = 0.

Let us skip the second statement for a moment and
consider the case when the OP in a clean superconductor
does reverse its sign but its angular average is finite.

We study, first, the limit of small impurity concen-
tration [(A(P)) » I/r]. Substituting the ratio g/g(g)
from Eq. (12) into Eq. (13) and then collecting terms pro-
portional to I/7. in the latter one can find out that o. =
0(I/7). In other words, renormalization of the OP is
small. In particular, its nodes remain almost at their origi-
nal locations. However, renormalization of frequency is
not small due to the logarithmic divergence of the term,
proportional to I/~ in the rhs of Eq. (12) at g(i1) = 0.
A closer examination of the function g(fl) [inverse to
f1(i1)], which can be extracted from Eq. (12), shows that
it departs from the coordinate origin with an infinite nega-
tive derivative and, after reaching its minimum, crosses the
abscissa axis at rIp = 5'L exp( —~XI/2). Here

and 5 i 2 denote the derivatives of the order parameter at
its nodes. Among the two roots, only go resides on the
physical sheet [9]. The first part of the statement (3) is
proved.
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In the opposite, dirty, limit (I/7 » T,o) the asymptotic
solution of Eqs. (12) and (13) reads

1
8(n) = n 1+ —[(~(4)&'+ n ] '", (14)r

the operator V in order to satisfy the above equation.
Therefore, v., coincides with r, for (6& /(5 ) ~ 0. This
completes the proof of the statements (2) and (3).

The properties of the AG equations, which have been
just established, give us a clue for an investigation of the
behavior of the angular-dependent DOS. The latter may be
found via the solutions of the AG equations, analytically
continued from the Matsubara sequence, defined on the
upper half of the imaginary axis of the frequency complex
plane, to the real axis according to

(~) = —(~(4)&[(~(@)&'+q'] '".1

Plugging this solution into Eq. (1) at T = 0 we derive the
following quasilinear equation [12]:

)V~(4) —1 ( (~&)V(4)(~& (16)
Assuming that Vo in(re) « 1, where Vo is the maximal
eigenvalue of the operator V, as previously, its solution
can be found explicitly:

~(e) = (~& —,(» = —(-)"p(- /«&).v(y) 2

(v) '

~.(~, 0)
= Re(e(e)[e (e) —5 (@,e)] 'i ). (21)

Here v,.(P) and v„(@)denote the DOS in the supercon-
ducting and the normal states, respectively, and the func-
tions e(e) and 6(@,e) represent the result of the analytical
continuation mentioned above. Namely, e(i', ) = if'„
5(@,ig„) = A„(P). At the Fermi level e(0) = ifj(0)
for I/r ( 1/7.. and e(0) = 0 for 1/r ) 1/7. Hence,
v, ($, 0) is finite for I/r ( I/r. and vanishes identically
for I/r & I/r, . It also vanishes at 1/r = 0. Therefore,
it has a maximum at some I/r & I/r„.

It is natural to suppose that a gap in the excitation
spectrum does persist for all I /r ) 1/7, We can
confirm this conjecture at least for I/r » I/r. . The
solution (14) and (15) of the AG equations can be
employed in this case with the same substitution g =
—i e and fl = —i e Plugg. ing this solution into Eq. (21)
and keeping the precision up to rA, one derives exactly
the same formula as for an isotropic superconductor [13]
with the average value (5& playing the role of the isotropic
gap. This result agrees with the Anderson isotropization
theorem [14]. Notice, however, that neither v, (e, @) nor
the OP become isotropic even in the extra dirty limit.

Evaluation with a higher precision shows that the
standard square root singularity in DOS turns into a finite
maximum of the height —((A&r) 'iz, smeared over the
interval 6e = rA and varying with angle. Nevertheless,
the threshold character of the DOS dependence on energy
with the threshold approximately equal to (6& remains
unaffected.

We have shown that the gap vanishes at I/r = I /r. ,

and it also vanishes at r = 0. Therefore, the gap reaches
its maximum value at some scattering rate I/~ & I /r. .

Thus, we propose to look for a rather peculiar phase
transition, which can exist at zero temperature and is regu-
lated by impurity concentration. One can try to find it
experimentally, scrutinizing the dependence of the quasi-
particle tunneling rate or the temperature correction to the
penetration depth on the residual resistivity in single crys-
tals of YBaCuO, doped by Pr or subjected to the radiation
damage. A transmutation of the gapless tunneling current-
voltage characteristics at small resistivity into the curves
with a threshold feature at higher values of residual resis-
tivity and an analogous conversion of the temperature de-
pendence of the penetration depth from the gapless to the
activated one would clearly indicate the presence of the

—i -2
X 1 ——lnr.;e V V =1. 20

Since r. (A& is assumed to , be small, 1n(7..e)/zr must
be close to the reciprocal maximal eigenvalue Vo of
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(17)
From Eqs. (14) and (15) it follows that fi(0) = 0 and
o (0) = 1/r » A. Since the renormalized OP 6(@)does
not have any nodes, no divergence can arise in Eq. (12).
In this way a self-consistency of the obtained solution is
guaranteed.

Summarizing, zI(0) 4 0 in a clean superconductor, and
it vanishes when a scattering rate substantially exceeds
T,o. Hence, there should exist some special value of r =
r., at which fI(0) first turns into zero. Since o.(0)~,=,. =
1/r. , the value of 7, can be found as a functional of 5(@)
by means of the following equation:

(&(O)/[&(@) + 1/']& = o.
The above equation should be supplemented by the self-
consistency and the AG equations (1), (12), and (13)
with r = r, . Using this ansatz one can find 7., at
least in principle, as a functional of the OP in a clean
superconductor.

To get more visible results we consider a limiting case
(V) « (V ). If this strong inequality is satisfied, the
average OP should be small compared to the amplitude of
its variation, and one can expect that the dependence T,(r)
is close to that for (6& = 0. It means that T, (r) reaches
almost zero value as r ~ r„but then has a powerlike tail:
T, (r) —r ' with ~ && 1. Since the point r. separates,
the domain of r with the d-like behavior from that of the
s-like one, it is natural to conjecture that r. is close to

A direct calculation justifies this guess. Indeed, let
I/r. » Q(Az»& (6&, then Eq. (18) yields

~- = (~&/(~'& (19)
Plugging the solution of Eq. (16) into the expression for
(Az& of the above relation one gets
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transition. An ideal experimental setting would include
controlling Josephson tunneling measurements in the cor-
ner geometry on the same samples to verify whether the
OP changes its sign.

In conclusion, we have shown that a phase transition
should take place at zero temperature and a special
value of the impurity scattering rate I/r, in a layered
superconductor, provided the OP in the clean limit does
change its sign on the Fermi surface but its angular
average is finite. We have argued that, according to
the recent experimental observations, the OP with the
required properties is likely to be an inherent feature, at
least for YBaCuO. This transition is characterized by a
gap generation in the excitation spectrum for 1/r ) I /r, .

The energy gap grows from zero at I/r = I/r. to its
maximum at some I/r ( I/r, and vanishes again in the
extra dirty limit. The DOS at the Fermi level turns into
zero in the clean case and at 1/r = I/r, reaching its
maximum at an intermediate value of I/r
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