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Manifestations of Classical Chaos in the Energy Level Spectrum of a Quantum Well
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The electronic energy levels and eigenfunctions of a wide potential well in a double barrier structure
with a large tilted magnetic field are investigated in the regime of strong classical chaos. Periodic
modulations of the level density are identified and related to distinct unstable closed classical orbits.
Single periodic orbits "scar" the wave functions corresponding to regular subsets of energy levels
determined by quantizing the classical action. Pronounced features in the tunneling rates into the well
provide an experimentally accessible means of studying wave-function scarring.

PACS numbers: 73.20.Dx, 05.45.+b, 73.40.Gk, 73.40.Kp

The correspondence between a chaotic classical system
and its quantum analog is of fundamental interest. Theo-
retical studies have highlighted the importance of unstable
periodic classical orbits which produce regular clustering
of the quantized energy levels [1,2] and "scar" the associ-
ated wave functions [3]. The influence of classical chaos
on two-dimensional quantum transport has been studied
using antidot superlattices [4] and billiard stadia [5]. The
link between the classical and quantum pictures of chaotic
electron dynamics has also been explored in recent ex-
periments on GaAs/(A1Ga)As resonant tunneling diodes
(RTD's) containing a wide (120 nm) potential well [6]. In
the presence of a large tilted magnetic field, the classical
orbits are chaotic. However, unstable closed orbits exist
and control the resonant tunneling peaks in the current-
voltage characteristics of the RTD's.

In this Letter, we calculate the quantized energy levels
and eigenfunctions of the wide GaAs quantum well

(QW) in a RTD, when a strong magnetic field B is
applied at an angle 0 normal to the barriers. For
values of 0 where the system exhibits strong classical
chaos, we identify periodic modulations in the density of
levels which we associate with distinct types of unstable
periodic orbit. The distribution of nearest-neighbor level
spacings is shown to obey Wigner statistics. The wave
functions corresponding to distinct subsets of energy
levels embedded within the full spectrum exhibit scarring
by a particular closed orbit. For each scarred wave
function, the number of antinodes along the corresponding
orbital path defines a quantum number which we relate to
the classical action of the orbit.

The potential energy of an electron in the RTD is
shown schematically in Fig. 1. Electrons are injected into
the QW from a two-dimensional electron gas (2DEG)
in the left-hand (LH) contact. In our calculations, the
injection energy and uniform electric field F in the QW
are found by using a simple model for the potential
variation through the device [6]. The chaos is generated
by collisions with the barriers which interrupt the regular
orbital motion at irregular times [6,7]. To study how
the classical motion in the well evolves with 0, we have

calculated trajectories for 225 different initial directions
at the LH barrier, consistent with the electron injection
energy calculated from the bias voltage V across the
device. Figure 2 shows Poincare sections generated by
plotting the velocity components (v~, v, ) each time the
electron hits the LH barrier when B = 11.4 T and F =
2. 1 X 106 Vm ' (corresponding to 0.4 V bias voltage
on the structure of Ref. [6]). At 6I = 0' [Fig. 2(a)], the
electrons perform cyclotron motion about the magnetic
field so that (u~, v, ) lie on concentric circles. When
0 = 3, islands of stable orbits are surrounded by a sea
of chaos. Comparison of Figs. 2(b) and 2(c) shows that
the size of the chaotic sea increases with increasing 0
until the system exhibits strongly chaotic behavior when
0 = 24' [Fig. 2(d)].

To investigate how the onset of chaotic classical motion
influences the corresponding quantum mechanical energy
level spectrum, we have calculated the energy levels e„
for a QW of width w = 120 nm with impenetrable walls
when B = 11.4 T and F = 2.1 X 10 Vm '. In the
gauge given by the vector potential A = (0, xBsin6I—
zBcos0, 0), the Hamiltonian for motion in the well,
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FIG. 1. Schematic conduction band diagram of the RTD
under bias V showing the 2DEG in the LH contact and the
energy e„ofthe nth level in the well. Inset: angle 0 of the
magnetic field relative to the tunneling (x) direction.
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FIG. 2. Poincare sections showing (vY, v, ) for 22500 colli-
sions with the LH barrier generated from 225 starting velocities
with 0 = (a) 0', (b) 3, (c) 6', and (d) 24 .

fx[ & 2w, is
1

P, + (P~ + exBsin0 —ezBcos8) + P,H =
2m

+ eF(2 w —x),1

where p„p~,p, are canonical momentum operators and
m* = 0.067m, is the band edge mass in GaAs. Because

p~ = Ak~ is a constant of the motion, we expand an
eigenfunction

le(x + 2w)
W„k(x, y, z) = g cz I sin Pz(z —zo)

p, l

exp(ikey),
where l = 1, 2, 3, . . . and P„(z—zo) is a simple har-
monic oscillator (SHO) wave function (p = 0, 1, 2, . . .)
centered at zu = fikY/eBcos8. W.ithin this basis, the
Hamiltonian reduces to a two-dimensional real symmetric
matrix whose eigenvalues are the energy levels e„(n=
1, 2, 3, . . .) which are independent of kY provided zo lies
within the sample boundaries.

For energies above -100 meV and for 15 ~ 0 ~ 60,
the level pattern exhibits the complexity characteristic of
nonintegrable systems [1,2] and will be described more
fully elsewhere [8]. In this paper, we analyze the energy
level spectrum for the particular tilt angle 0 = 20 within
the domain dominated by strong classical chaos. Despite
the complexity of the spectrum, periodic clustering of
the energy levels occurs. This is most easily seen when
each energy level is broadened to —2 meV, producing
the smoothed density of levels D(e) shown in Fig. 3(a).
In the calculations, a basis constructed from 120 sine
waves and 120 SHO wave functions is used which gives
accurate energy levels to at least 1.3 eV when 0 = 20'.
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The density of levels can be expressed as the sum of the
local mean density D&v(e) and a rapidly oscillating term

Dos(e) as shown in Fig. 3. In the semiclassical limit,
DAv(e) can be calculated from phase space arguments and

Dos(e) can be related to the unstable periodic classical
orbits using the Gutzwiller trace formula [1]

Dos(e) = Im P a~ exp[iSi(e, B, F, 0)/6],
J

where Si(e, B,F, H) is the classical action of the jth
topologically distinct periodic orbit, and the expansion
coefficient a~ depends on the orbital stability. For given
8, F, and 0, each periodic orbit imposes a regular modu-
lation in the density of levels with an energy pe-
riod Aei = h[BS(e, B,F, O)/Be] ' = h/T~(e, B,F, O),
where T, (e, B,F, 0) is the period of the jth unstable closed
orbit. When F = 2.1 X 10 Vm ', electrons in the RTD
are injected into the QW at energy e;„=300 me V relative
to the conduction band edge at the right-hand (RH) side
of the well. Fig. 3(b) shows Dos(e) for energies close
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FIG. 3. (a) Slowly (rapidly) varying curve: local mean density
of levels DAv(e) [smoothed density of levels D(e)] calculated
for B=11.4T, F =2.1 X 10 Vm ', and0 =20. Inset
histogram: probability distribution P(S) of scaled level spacings
S for the range 100 ~ e„~700 meV. Solid curve: PooE(S).
(b) Oscillatory contribution Dos(e) to the density of levels.
(c) Fourier power spectrum of the Dos(e) plot showing
four distinct peaks labeled by T], T2, T3, T4 and corresponding
periodic orbits shown projected on the x-y plane (axes inset).
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to e;„.Several periodic components can be identified.
These are revealed more clearly in the Fourier transform
shown in Fig. 3(c). The horizontal scale indicates the
time T = h/Ae corresponding to the reciprocal of the
energy period. The Fourier power spectrum contains
four distinct peaks with characteristic times T~ —0.4 ps,
T2 —0.6 ps, T3 —0.8 ps, and T4 —1.0 ps, almost
identical to the periods of the type 1, type 2, and type 3
unstable closed orbits (shown projected on the x-y plane)
[6], where the type number gives the number of successive
collisions on the RH barrier for each period. These are
the shortest periodic orbits in the QW close to the electron
injection energy. The oscillations in Dos(e) Produced
by the type 1 and type 2 orbits (two leftmost insets) have
periods consistent with the series of peaks in the observed
current-voltage characteristics I(V) [6].

The spacings between adjacent energy levels exhibit
behavior which is thought to be universal for noninte-
grable systems. To investigate the statistical properties
of these spacings, the energy levels 1e„)are mapped into
a new sequence of levels (E„)according to the transfor-
mation F.„=N~v(e„) [1,2], where NAv(e) is the aver-
age number of levels below energy t . The histogram in
Fig. 3(a) shows the probability distribution of the sepa-
ration 5 between adjacent scaled levels calculated for
0 =20', F =2.1 X 10 Vm ', and8=11.4T. This
distribution closely resembles the Wigner probability den-
sity function PooE(5) = (7rS/2) exp( AS /4) show—n by
the solid curve [Gaussian orthogonal ensemble (GOE)
statistics [1]]. This is due to the 5~~ invariance of the
Hamiltonian (operator 5~ changes the sign of the y coor-
dinate and 7 is the time reversal operator), which ensures
that the reduced Hamiltonian matrix is real symmetric,
and therefore the level spacings obey GOE statistics [9].

In the semiclassical regime, the wave functions of non-
integrable systems often reveal regions of high probability
density (scars) near the paths of periodic classical orbits
[1,3]. For our system, we have identified a number of
unstable periodic orbits, each of which produces remark-
ably clear scars in individual eigenfunctions associated
with subsets of regularly spaced energy levels embedded
within the complete spectrum. In Fig. 4, we show proba-
bility density plots for wave functions scarred by type 1

orbits [(a) and (b)] or type 2 orbits [(c) and (d)] over-
laid. In our chosen gauge, the probability density depends
only on x and z [10]. For comparison, the gauge invari-
ant classical orbits are therefore shown projected on the
x-z plane. Projections on the x-y plane are also shown
in the inset. The eigenfunctions reveal well-defined scars
which are localized along a single closed orbit and lie ap-
proximately parallel to B. The energy levels correspond-
ing to the wave functions scarred by the type 1 (type 2)
orbits in Fig. 4 are separated by Ae = 9.03 (5.55) meV,
which is very close to the value h/T = 8.99 (5.51) meV
obtained from the mean orbital period T = 0.46 (0.75) ps
calculated at an energy midway between the two levels.
Intermediate energy levels generally reveal no trace of
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FIG. 4 (color). Probability density (black = 0) of eigenfunc-
tions corresponding to levels: (a) e.„=102.83 meV (n = 34)
and (b) e„=111.86 meV (n = 40) at 0 = 20', (c) e„=
98.44 meV (n = 37) and (d) e„=103.99 meV (n = 42) at
0 = 40 . F = 5.25 X 105 V m ' (V = 0.1 V), 8 = 11.4 T.
Overlays: classical orbits scarring wave functions. Arrows
show direction of travel. Upper insets: magnetic held orienta-
tion in x-z plane. Lower insets: orbits projected onto x-y plane
(x normal to barriers).

the scars. Subsets of levels which display scarred wave-
functions can be fitted quite well by a quantization con-
dition SJ(e, B, F, 0) = (v + PJ)h, where v = 1, 2, 3, . . .
gives the number of antinodes in the scarred wave func-
tion along the closed classical path and @~ is fixed for
a given orbit. The scarred wave functions usually corre-
spond to the eigenvalues closest to the energies predicted
by this quantization rule.

For the successive wave functions scarred by type 1

orbits in Figs. 4(a) and 4(b), the number of antinodes is
v = 13 and 14 and for this sequence P& = 1.2. For the
scars of the type 2 orbits in Figs. 4(c) and 4(d), v = 17
and 18 with Pz = 2.58. Quantization of the classical
action thus enables us to predict which eigenfunctions
will be scarred by the orbits and directly relate the
quantum numbers v to the scar patterns. This rule has
successfully located scars of type 1 (type 2) orbits which
are accessible to tunneling electrons in the RTD's [6]
for quantum numbers in the range 17 ~ v ~ 29 (10 ~
v ~ 32) and for a variety of V and 0 values. Subsets of
eigenstates scarred by other unstable periodic orbits can
also be identified in this way. General features of scarring
have been studied by Berry [11]using Wigner functions.
Wigner functions for individual eigenstates were used by
Agam and Fishman [12] to analyze scar patterns in a
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billiard stadium. They found maximal scar strengths near
energies satisfying the above quantization rule. In our
system, the scar patterns clearly resemble standing waves
along the classical path which has permitted a simple
physical interpretation of v. Similar results were found
by Eckhardt, Hose, and Pollak [13] for the scarring of
degenerate eigenstates in a chaotic quartic oscillator.

To investigate the role of eigenfunction scarring in the
experimental tunneling characteristics, we must take into
account the finite heights of the confining barriers in the
RTD. At low energies, this perturbs only weakly the
level spectra obtained for infinite barriers, but is neces-
sary to give nonzero tunnel coupling of the QW and emit-
ter 2DEG states. We have therefore calculated QW states
for 330 meV barriers [GaAs j(Al0 4Gao 6)As] using a more
general set of basis functions. The transfer matrix ele-
ments coupling the QW states to the occupied emitter
state (n = 0 Landau level) were obtained for a range of
energies close to the tunnel injection energy. The tunnel-
ing rate is proportional to the square of this matrix ele-
ment. As shown in Fig. 5 for V = 0.1 V, B = 11.4 T,
this is found to be an order of magnitude larger for the
states scarred by type 2 orbits [of Figs. 4(c) and 4(d),
0 = 40 ] than for nearby unscarred states. Similar re-
sults are found for scarred states occurring at other val-
ues of V, B, and 0. This clearly demonstrates that for
certain voltage regimes tunneling into individual scarred
states produces periodic peaks in the tunneling rates and
hence in I(V), which totally dominate the weak back-
ground transitions into unscarred states. Unfortunately,
experiments on the 120 nm wide well have insufficient
resolution to distinguish between tunneling into a discrete
scarred state or a cluster of neighboring levels since the
mean level spacing -1 meV is much less than the broad-
ening I = fi/r, —6 meV, corresponding to the life-
time ~, —0.1 ps imposed by optic phonon emission and
scattering processes [14]. However, for narrower wells
-20 nm and higher fields B —35 T, resonant features
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FIG. 5. Square of transfer matrix element M for tunneling
into QW states at energies close to the injection energy e;„=
88 meV for V = 0.1 V, B = 11.4 T, and 0 = 40'. Arrows
indicate states scarred by type 2 periodic orbits with antinode
quantum number v shown.

in I(V) originating from transitions into individual states
could, in principle, be resolved. The tunnel current am-
plitudes could then provide direct experimental evidence
for periodic wave-function scarring.

In summary, we have investigated the energy level
spectrum and wave functions of a wide QW in the
regime of strong classical chaos. The statistical behavior
of the levels reveals clustering on a scale determined
by the underlying periodic classical orbits. Sequences
of individual wave functions scarred by single periodic
orbits can be located using a Bohr —Sommerfield-like
quantization rule in which the quantum number is directly
related to the scar pattern. Wave-function scarring has
a pronounced effect on the tunneling rate into the well
which exhibits pronounced maxima for transitions into
individual scarred states. Magnetotunneling experiments
on RTD's with narrower wells and higher magnetic
fields than hitherto shown may give direct evidence for
periodic wave-function scarring and resolve the question
of whether the observed resonant peaks originate from
transitions into individual scarred states or into clusters
of levels, which both have the same energy periodicity.
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