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Size Dependence of Excitons in Silicon Nanocrystals
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Two-particle calculations, which include the electron-hole Coulomb interaction nonperturbatively, are
performed for excitons in surface passivated Si nanocrystals. The calculated exciton energies agree
quantitatively with photoluminescence data. The exciton charge distributions differ markedly from
those obtained in single-particle calculations. The two-particle calculations are compared with single-
particle calculations which treat the Coulomb interaction perturbatively. The range of validity for the
perturbative treatment of the Coulomb interaction is determined.

PACS numbers: 71.35.+z, 61.46.+w, 73.20.Dx, 78.55.Hx

Nanometer-sized Si structures photoluminesce effi-
ciently at infrared and visible wavelengths [1]. This
observation has prompted many theoretical and experi-
mental studies, both exploring technological applications
and investigating the fundamental physical and electronic
properties. Porous Si has received particular attention
because of its potential use as an optoelectronic ma-
terial, but the mechanism for its photoluminescence
remains a subject of debate. Recently, the dependence
of electronic properties on spatial confinement has been
determined using a well-defined system of size-selected,
surface passivated, Si nanocrystals [2]. The measured
photoluminescence energy increases as the nanocrystal
size decreases, with peak visible light emission coming
from crystallites smaller than 15 A in diameter. In
order to explain the observations, recent publications
have called for reliable calculations of the Coulomb
interaction between electrons and holes localized on Si
particles [3]. In this paper we present the first excited
state electron-hole pair calculations for Si nanocrystals,
which include the Coulomb interaction nonperturbatively.
Using the time-dependent checkerboard propagation
technique within a nearest-neighbor tight-binding model
[4,5], we perform full two-particle calculations [6] for
the nanocrystal exciton. We obtain excellent agreement
between our calculated exciton energies and the experi-
mental photoluminescence energies for the entire range
of nanocrystals up to 100 A diam. We calculate the
exciton charge distributions and compare them to the
charge distributions obtained from single-particle band
edge eigenfunctions. The confinement induced mixing of
band edge k states is analyzed.

The Si nanocrystals are modeled by adding concentric
shells of atoms around a central atom, and saturating the
surface dangling orbitals with hydrogen atoms. Ground
state properties are determined by evaluating the time
evolution of a single-particle electronic wave function, W,
using the time-dependent Schrodinger equation, 'P(t) =
e ' 't s'sIt(0), with a tight-binding Hamiltonian [4,5]:

QF(c; c; + g TJ'k(c~ ck + ckcj).

c; and c; are the creation and annihilation operators for
an electron on site i, and E; and Tjk are the tight-binding
parameters, taken from Ref. [7]. An expanded basis of
five orbitals (3s, 3p„3py, 3p„and 4s) on each atom
ensures an accurate conduction band edge. Extended
Hiickel parameters between Si and H atoms are used to
simulate the H atoms bonded to the nanocrystal surface
[8]. The solution of the time-dependent Schrodinger
equation involves making a checkerboard decomposition
of the tetrahedral lattice, and propagating the electronic
wave function along each of the four bond directions.
Eigenfunctions and local densities of states are obtained
by Fourier transformation of the wave function time series
and the autocorrelation function, respectively.

Excited state properties are determined by calculating
the time evolution of a two-particle electron-hole wave
function. The standard two-particle tight-binding Hamil-
tonian is obtained by adding the electron-hole Coulomb
interaction to tight-binding terms of the form of Eq. (1),
but with the electron and hole restricted to the conduction
and valence bands, respectively. The same results are ob-
tained by propagating using the following Hamiltonian:

W =Pe, c,'c, + gZ, v,'v,
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with the initial two-particle wave function chosen to
restrict the electron to motion within the conduction band
and the hole to motion within the valence band [6].
Here v; and v; are creation and annihilation operators
for a hole on site i . The tight-binding parameters
for the hole are set equal to those for the electron.
The Coulomb integrals between orbitals on the same
atom are evaluated directly using Slater orbitals. The
Ohno formula [9] is used to approximate Coulomb
integrals between orbitals on different atoms, and the
integrals are scaled with a distance-dependent dielectric
screening [10]. A calculation of the lowest exciton
energy and of the two-particle exciton eigenfunction
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FIG. 1. Calculated band edges and band gaps for Si nanocrys-
tals. The bulk band gap (1.17 eV) is shown for comparison.
The band edge positions have an intrinsic uncertainty due to
Fourier transformation of a finite time series. In these calcula-
tions the uncertainty is ~0.05 eV.

is analogous to the determination of the single-particle
local density of states and the electron eigenfunction [6].
The excited state electron and hole charge distributions
are obtained by calculating the expectation values of
the density operators 6(r —r, t„tm„)and 6(r —rh, t, )
over the exciton eigenfunction. Full details of the time-
dependent tight-binding method and checkerboard time
propagation are given in Refs. [4—6].

Figure 1 shows the calculated band edges and resulting

band gap for H-terminated Si nanocrystals up to 100 A
in diameter. At each size, the shift in the valence band
edge is approximately double the shift in the conduction
band edge. The band gap approaches the bulk value
of 1.17 eV asymptotically as the size is increased. Our
technique allows the study of the entire range of interesting
nanocrystal sizes, whereas conventional time-independent
techniques are restricted to structures less than around
40 A in diameter.

In Fig. 2 we compare our calculated exciton energies
with measured photoluminescence energies [2] for Si
nanocrystals. Good agreement with the experimental data
is obtained at all sizes. According to Schuppler eI; al. , the
experimental measurement for the 80 A diam nanocrystal
is larger than our predicted value, because the optical
efficiency is highest for the smallest particles in their
sample, which emit at shorter wavelengths [11]. The
experimental luminescence energy could also be affected
by a strain in the thick oxide layer covering the large
particles. Recent measurements on large H-terminated
Si nanocrystals give values which lie on our calculated
line [12]. The slight difference between the exciton and
photoluminescence energies for the smallest (around 11 A.

diam) nanocrystals could be due to surface localized tail
states at the band edges causing the photoemission energy
to lie systematically below the exciton energy.

For comparison we have also plotted the results of fre-
quently cited calculations which use (i) real space plane-
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FIG. 2. Comparison for our calculated exciton energies with
measured photoluminescence energies for Si nanocrystals [2]
and the results of other calculations which use empirical
pseudopotentials [13], and third nearest-neighbor tight binding
(TNN T-B) with the standard four-orbital basis [14].

wave pseudopotentials [13]and (ii) third nearest-neighbor
tight binding with the standard basis of four orbitals per
atom [14]. These results were not obtained from full two-
particle calculations, but instead the single-particle band

gap was calculated, then the contribution of the Coulomb
energy was determined using perturbation theory. Both
calculations improve over the standard effective mass ap-
proximation (EMA) [15],but still predict exciton energies
larger than the measured photoluminescence energies by
more than 1.5 eV for the smallest nanocrystals studied.
The large discrepancy between these results and the experi-
mental observations could be due to either the perturbative
treatment of the Coulomb interaction, or to poor predic-
tion of the single-particle band gap. To investigate the
source of the discrepancy we have determined the range
of validity for the perturbative treatment of the Coulomb
interaction by comparing the results of perturbation theory
with the results of our full two-particle calculations. We
find that the Coulomb energies calculated using the full
electron-hole calculation are indistinguishable from the re-
sults of perturbation theory and conclude that our improved
agreement with experiment is due largely to the accuracy
of our tight-binding description with the expanded basis,
rather than the nonperturbative Coulomb treatment.

Single-particle band edge eigenfunctions (which ignore
the Coulomb interaction) are often used in calculations
of optical matrix elements. In order to determine the va-
lidity of this simplification, we now compare the elec-
tron and hole charge distributions obtained using our full
two-particle calculation with the charge distributions in
the single-particle band edge eigenfunctions. Figure 3
shows the electron and hole charge distributions in a
147 atom (18 A. diam) Si nanocrystal, obtained using our
full two-particle calculation with the Coulomb interaction
included. To improve computational efficiency, the sur-
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FIG. 3. (a) Electron and (b) hole charge distributions after
photoexcitation in a 147 atom (18 A. diam) Si nanocrystal. The
Coulomb interaction is included in the Hamiltonian.

face hydrogen atoms and dangling orbitals were not in-
cluded in the model for the charge density calculations.
The small black spheres and black lines show the atoms
and bonds, respectively. The gray spheres represent the
magnitude of the charge distribution in each sp3 hybrid or
4s orbital. The valence band edge is degenerate, and the
Coulomb interaction causes the hole to orient along one
of the symmetry axes [Figure 3(b)].

Figure 4 shows the single-particle band edge charge
distributions calculated for the same 147 atom Si
nanocrystal [16]. Figure 4(a) represents the probability
distribution for the electron after photoexcitation if it
were not attracted to the hole in the valence band, and
Fig. 4(b) represents the probability distribution for the
hole if it were not attracted to the excited electron. A
comparison with Fig. 3 shows that the attractive Coulomb
interaction causes both the electron and hole distributions
to shrink towards the middle of the crystallite. The root
mean square distance from the center (r, = Q(r2))
for the hole charge distribution decreases from 5.9 A
when the Coulomb interaction is omitted and to 5.2 A
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FIG. 4. Probability distributions for the eigenstates at (a) the
conduction band edge, and (b) the valence band edge in a
147 atom (18 A diam) Si nanocrystal. These represent the
electron and hole charge distributions after photoexcitation if
the Coulomb interaction between the particles is ignored.

in the full calculation. Similarly, r, , for the electron
decreases from 6.0 to 5.0 A. . The radial changes in
the charge distributions are plotted in Fig. 5. The ex-
cited state distributions are markedly different from the
band edge distributions, suggesting that the band edge
eigenfunctions are not good approximations to the true
exciton wave functions, and that optical matrix elements
for interband transitions must therefore be calculated
using full two-particle wave functions with the Coulomb
interaction included.

Finally, we project out the k states which contribute to
the lowest energy interband transition by Fourier trans-
forming the band edge eigenfunctions of H-terminated
nanocrystals. The band edge eigenfunctions in a 100 A
diam nanocrystal correspond to narrow distributions in k
space. There is no overlap between the k state distribu-
tions for the hole (at I ) and the electron (near X), and
the interband transition is fully indirect. As the nanocrys-
tal size is decreased the electron and hole k distribu-
tions broaden by approximately the same amount, until for
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time-dependent checkerboard propagation technique. The
quantitative agreement with experiment obtained here for
surface passivated Si nanocrystals now allows for mean-
ingful studies of both confinement and surface effects in
more complex Si structures [19].
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FIG. 5. Radial probability distributions for (a) electron at
the bottom of the conduction band, and (b) hole at the
top of the valence band, in a 147 atom (18 4 diam) Si
nanocrystal. Distributions are shown with and without electron-
hole Coulomb interaction.

25 A diam crystallites the tails of the distributions overlap
and a zero phonon radiative transition is weakly allowed
[17]. The increasing overlap of the tails is a possible ex-
planation for the observed increase in quantum efficiency
with reduced crystallite size [11]. However, even for the
smallest nanocrystals studied here (12 A diam) the peaks
of the distributions are at different positions in k space,
and the nanocrystals remain primarily indirect gap.

Two separate conclusions can be drawn from the work
presented here. First, our calculations have shown that
the exciton energies predicted by the time-dependent
tight-binding technique agree quantitatively with the mea-
sured photoluminescence energies for surface passivated
Si nanocrystals up to 100 A in diameter. Therefore
we conclude that the photoluminescence mechanism is
dominated by exciton recombination across the gap. The
wavelength of the luminescence is determined primarily

by the size of the crystallite, which is more important
than surface effects in predicting the electronic proper-
ties of surface passivated nanostructures. Second, we
have determined that the Coulomb interaction may be
treated perturbatively in calculating exciton energies for
Si nanocrystals without introducing significant error.
However, the Coulomb interaction must be included when
calculating the excited state electron and hole charge dis-
tributions (and consequently also the optical properties),
because the single-particle band edge eigenfunctions are
not good approximations to the exciton wave functions.

In porous Si the surface is unlikely to be fully passi-
vated, and the inhuence of both surface and size effects
on the electronic properties must be considered [18]. Fu-
ture work will study the effects of surface disorder and
reconstruction by calculating two-particle optical absorp-
tion spectra for structures with nonideal surfaces using the
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