Measurement of the W Boson Mass

F. Abe,¹³ M. G. Albrow,⁷ S.R. Amendolia,²³ D. Amidei,¹⁶ J. Antos,²⁸ C. Anway-Wiese,⁴ G. Apollinari,²⁶ H. Areti, M. Atac,⁷ P. Auchincloss, ²⁵ F. Azfar, ²¹ P. Azzi, ²⁰ N. Bacchetta, ²⁰ W. Badgett, ¹⁶ M. W. Bailey, ¹⁸ J. Bao, ³ P. de Barbaro,²⁵ A. Barbaro-Galtieri, ¹⁴ V. E. Barnes, ²⁴ B. A. Barnett, ¹² P. Bartalini, ²³ G. Bauer, ¹⁵ T. Baumann F. Bedeschi,²³ S. Behrends,³ S. Belforte,²³ G. Bellettini,²³ J. Bellinger,³⁴ D. Benjamin,³¹ J. Benlloch,¹⁵ J. Bensinger, ⁷. Bedeschi,²³ S. Behrends,³ S. Belforte,²³ G. Bellettini,²³ J. Bellinger,³⁴ D. Benjamin,³¹ J. Benlloch,¹⁵ J. Bensinger
D. Benton,²¹ A. Beretvas,⁷ J. P. Berge,⁷ S. Bertolucci,⁸ A. Bhatti,²⁶ K. Bie R. E. Blair, ¹ C. Blocker, ³ A. Bodek, ²⁵ W. Bokhari, ¹⁵ V. Bolognesi, ²³ D. Bortoletto, ²⁴ C. Boswell, ¹² T. Boulos, ¹⁴ G. Brandenburg, 9^9 C. Bromberg, 17 E. Buckley-Geer, 7^7 H. S. Budd, 25 K. Burkett, 16 G. Busetto, 20 A. Byon-Wagner Brandenburg, C. Bronnberg, E. Buckley-Geer, T. S. Budd, K. Burkett, G. Busetto, A. Byon-wagner
K. L. Byrum, ¹ J. Cammerata, ¹² C. Campagnari, ⁷ M. Campbell, ¹⁶ A. Caner, ⁷ W. Carithers, ¹⁴ D. Carlsmith, ³⁴ A. Castro,²⁰ Y. Cen,²¹ F. Cervelli,²³ H. Y. Chao,²⁸ J. Chapman,¹⁶ M.-T. Cheng,²⁸ G. Chiarelli,²³ T. Chikamatsu C. N. Chiou, ²⁸ L. Christofek, ¹⁰ S. Cihangir, ⁷ A. G. Clark, ²³ M. Cobal, ²³ M. Contreras, ⁵ J. Conway, ²⁷ J. Cooper, M. Cordelli, ⁸ C. Couyoumtzelis, ²³ D. Crane, ¹ J. D. Cunningham, ³ T. Daniels, ¹⁵ F. DeJongh, ⁷ S. Delchamps S. Dell'Agnello, ²³ M. Dell'Orso, ²³ L. Demortier, ²⁶ B. Denby, ²³ M. Deninno, ² P. F. Derwent, ¹⁶ T. Devlin, M. Dickson, ²⁵ J. R. Dittmann, ⁶ S. Donati, ²³ R. B. Drucker, ¹⁴ A. Dunn, ¹⁶ K. Einsweiler, ¹⁴ J. E. Elias, ⁷ R. Ely, ¹⁴ E. Engels, Jr.,²² S. Eno,⁵ D. Errede, ¹⁰ S. Errede, ¹⁰ Q. Fan, ²⁵ B. Farhat, ¹⁵ I. Fiori, ² B. Flaugher, ⁷ G. W. Foster, M. Franklin, ⁹ M. Frautschi, ¹⁸ J. Freeman, ⁷ J. Friedman, ¹⁵ H. Frisch, ⁵ A. Fry, ²⁹ T. A. Fuess, ¹ Y. Fukui, ¹³ S. Funaki, ²³ G. Gagliardi, 23 S. Galeotti, 23 M. Gallinaro, 20 A. F. Garfinkel, 24 S. Geer, 7 D. W. Gerdes, 16 P. Giannetti, 23 N. Giokaris, P. Giromini,⁸ L. Gladney,²¹ D. Glenzinski,¹² M. Gold,¹⁸ J. Gonzalez,²¹ A. Gordon,⁹ A. T. Goshaw,⁶ K. Goulianos, H. Grassmann, ⁶ A. Grewal, ²¹ L. Groer, ²⁷ C. Grosso-Pilcher, ⁵ C. Haber, ¹⁴ S. R. Hahn, ⁷ R. Hamilton, ⁹ R. Handler, ³⁴ R. M. Hans, ³⁵ K. Hara, ³² B. Harral, ²¹ R. M. Harris, ⁷ S. A. Hauger, ⁶ J. Hauser, ⁴ C. Hawk, ²⁷ J. Heinrich, ²¹ D. Cronin-Hennessy, ⁶ R. Hollebeek, ²¹ L. Holloway, ¹⁰ A. Hölscher, ¹¹ S. Hong, ¹⁶ 1. Hans,³⁵ K. Hara,³² B. Harral,²¹ R. M. Harris,⁷ S. A. Hauger,⁶ J. Hauser,⁴ C. Hawk,²⁷ J. Heinrich,²¹ D. C
Hennessy,⁶ R. Hollebeek,²¹ L. Holloway,¹⁰ A. Hölscher,¹¹ S. Hong,¹⁶ G. Houk,²¹ P. Hu, R. Hughes, 25 P. Hurst, 9 J. Huston, 17 J. Huth, 9 J. Hylen, 7 M. Incagli, 23 J. Incandela, 7 H. Iso, 32 H. Jensen, 7 C. P. Jessop, 9 U. Joshi, ⁷ R. W. Kadel, ¹⁴ E. Kajfasz, ⁷,* T. Kamon, ³⁰ T. Kaneko, ³² D. A. Kardelis, ¹⁰ H. Kasha, ³⁵ Y. Kato, ¹⁹ L. Keeble, R. D. Kennedy, ²⁷ R. Kephart, ⁷ P. Kesten, ¹⁴ D. Kestenbaum, ⁹ R. M. Keup, ¹⁰ H. Keutelian, ⁷ F. Keyvan, ⁴ D. H. Kim, R. D. Kennedy, ²⁷ R. Kephart, ⁷ P. Kesten, ¹⁴ D. Kestenbaum, ⁹ R. M. Keup, ¹⁰ H. Keutelian, ⁷ F. Keyvan, ⁴ D. H. Kim,
H. S. Kim, ¹¹ S. B. Kim, ¹⁶ S. H. Kim, ³² Y. K. Kim, ¹⁴ L. Kirsch, ³ P. Koehn, K. Kordas,¹¹ W. Koska,⁷ E. Kovacs,^{7,*} W. Kowald,⁶ M. Krasberg,¹⁶ J. Kroll,⁷ M. Kruse,²⁴ S. E. Kuhlmann E. Kuns,²⁷ A. T. Laasanen,²⁴ N. Labanca,²³ S. Lammel,⁴ J. I. Lamoureux,³ T. LeCompte,¹⁰ S. Leone,²³ J. D. Lewis,
P. Limon,⁷ M. Lindgren,⁴ T. M. Liss,¹⁰ N. Lockyer,²¹ C. Loomis,²⁷ O. Long,²¹ M. Lo D. Lucchesi,²³ C.B. Luchini,¹⁰ P. Lukens,⁷ J. Lys,¹⁴ P. Maas,³⁴ K. Maeshima,⁷ A. Maghakian,²⁶ P. Maksimovic,¹⁵ M. Mangano,²³ J. Mansour,¹⁷ M. Mariotti,²⁰ J. P. Marriner,⁷ A. Martin,¹⁰ J. A. J. Matthews,¹⁸ R. Mattingly,¹⁵ P. McIntyre, 30 P. Melese, 26 A. Menzione, 23 E. Meschi, 23 G. Michail, 9 S. Mikamo, 13 M. Miller, 5 R. Miller, 17 T. Mimashi, 32 S. Miscetti, 8 M. Mishina, 13 H. Mitsushio, 32 S. Miyashita, 32 Y. Morita, 23 S. Moulding, 26 J. Mueller, Mimashi,³² S. Miscetti, ⁸ M. Mishina, ¹³ H. Mitsushio, ³² S. Miyashita, ³² Y. Morita, ²³ S. Moulding, ²⁶ J. Mueller A. Mukherjee, ⁷ T. Muller, ⁴ P. Musgrave, ¹¹ L. F. Nakae, ²⁹ I. Nakano, ³² C. Nel Holmes,⁷ L. Nodulman,¹ S. Ogawa,³² S. H. Oh,⁶ K. E. Ohl,³⁵ R. Oishi,³² T. Okusawa,¹⁹ C. Pagliarone,²³ R. Paoletti, V. Papadimitriou,³¹ S. Park,⁷ J. Patrick,⁷ G. Pauletta,²³ M. Paulini,¹⁴ L. Pescara,²⁰ M. D. Peters,¹⁴ T. J. Phillips, V. Papadimitriou,³¹ S. Park,⁷ J. Patrick,⁷ G. Pauletta,²³ M. Paulini,¹⁴ L. Pescara,²⁰ M. D. Peters,¹⁴ T. J. Phillips,⁶ G. Piacentino,² M. Pillai,²⁵ R. Plunkett,⁷ L. Pondrom,³⁴ N. Produit,¹⁴ J. Pr F. Rimondi,² L. Ristori,²³ M. Roach-Bellino,³³ W. J. Robertson, ⁶ T. Rodrigo, ⁷ J. Romano, ⁵ L. Rosenson, ¹⁵ W. K. Sakumoto,²⁵ D. Saltzberg,⁵ A. Sansoni,⁸ V. Scarpine, ³⁰ A. Schindler, ¹⁴ P. Schlabach, ⁹ E. E. Schmidt, M. P. Schmidt, ³⁵ O. Schneider, ¹⁴ G. F. Sciacca, ²³ A. Scribano, ²³ S. Segler, ⁷ S. Seidel, ¹⁸ Y. Seiya, ³² G. Sganos, A. Sgolacchia,² M. Shapiro,¹⁴ N.M. Shaw,²⁴ Q. Shen,²⁴ P.F. Shepard,²² M. Shimojima,³² M. Shochet,⁵ J. Siegrist,²⁹ A. Sgolacchia,² M. Shapiro, ¹⁴ N. M. Shaw, ²⁴ Q. Shen, ²⁴ P. F. Shepard, ²² M. Shimojima, ³² M. Shochet, ⁵ J. Siegrist, ²⁹
A. Sill,³¹ P. Sinervo, ¹¹ P. Singh, ²² J. Skarha, ¹² K. Sliwa, ³³ D. A. S J. Spalding,⁷ L. Spiegel,⁷ P. Sphicas,¹⁵ A. Spies,¹² L. Stanco,²⁰ J. Steele,³⁴ A. Stefanini,²³ K. Strahl,¹¹ J. Strait, D. Stuart,⁷ G. Sullivan,⁵ K. Sumorok,¹⁵ R.L. Swartz, Jr.,¹⁰ T. Takahashi,¹⁹ K. Takikawa,³² F. Tartarelli,²³ W. Taylor, P. K. Teng,²⁸ Y. Teramoto,¹⁹ S. Tether,¹⁵ D. Theriot,⁷ J. Thomas,²⁹ T. L. Thomas,¹⁸ R. Thun,¹⁶ M. Timko,³³ P. Tipton, ²⁵ A. Titov, ²⁶ S. Tkaczyk, ⁷ K. Tollefson, ²⁵ A. Tollestrup, ⁷ J. Tonnison, ²⁴ J. F. de Troconiz, ⁹ J. Tseng, ¹² M. Turcotte,²⁹ N. Turini,²³ N. Uemura,³² F. Ukegawa,²¹ G. Unal,²¹ S. C. van den Brink,²² S. Vejcik III,¹⁶ R. Vidal, M. Vondracek, ¹⁰ D. Vucinic, ¹⁵ R. G. Wagner, ¹ R. L. Wagner, ⁷ N. Wainer, ⁷ R. C. Walker, ²⁵ C. Wang, ⁶ C. H. Wang, . Vondracek, ¹⁰ D. Vucinic, ¹⁵ R. G. Wagner, ¹ R. L. Wagner, ⁷ N. Wainer, ⁷ R. C. Walker, ²⁵ C. Wang, ⁶ C. H. Wang G. Wang, ⁵ M. J. Wang, ²⁸ Q. F. Wang, ²⁶ A. Warburton, ¹¹ G. Watts, ²⁵ T. Watts, C. Wendt, 34 H. Wenzel, 14 W. C. Wester III, 7 T. Westhusing, 10 A. B. Wicklund, 1 E. Wicklund R. Wilkinson, ²¹ H. H. Williams, ²¹ P. Wilson, ⁵ B. L. Winer, ²⁵ J. Wolinski, ³⁰ D. Y. Wu, ¹⁶ X. Wu, ²³ J. Wyss, ²⁰ A. Yagil, R. Wilkinson,²¹ H. H. Williams,²¹ P. Wilson,⁵ B. L. Winer,²⁵ J. Wolinski,³⁰ D. Y. Wu,¹⁶ X. Wu,²³ J. Wyss,²⁰ A. Yagil
W. Yao,¹⁴ K. Yasuoka,³² Y. Ye,¹¹ G. P. Yeh,⁷ P. Yeh,²⁸ M. Yin,⁶ J. Yoh,⁷ C. I. Yu,³⁵ J. C. Yun,⁷ A. Zanetti,²³ F. Zetti,²³ L. Zhang,³⁴ S. Zhang,¹⁶ W. Zhang,²¹ and S. Zucchelli

(CDF Collaboration)

0031-9007/95/75(1)/11(6)\$06.00 © 1995 The American Physical Society

'Argonne National Laboratory, Argonne, Illinois 60439

 2 Istituto Nazionale di Fisica Nucleare, University of Bologna, I-40126 Bologna, Italy

Brandeis University, Waltham, Massachusetts 02254

University of California at Los Angeles, Los Angeles, California 90024

- ^s University of Chicago, Chicago, Illinois 60637
- Duke University, Durham, North Carolina 27708

 7 Fermi National Accelerator Laboratory, Batavia, Illinois 60510

Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy

 9 Harvard University, Cambridge, Massachusetts 02138

 10 University of Illinois, Urbana, Illinois 61801

¹¹ Institute of Particle Physics, McGill University, Montreal, Canada H3A 2T8

and University of Toronto, Toronto, Canada M5S lA7

 2 The Johns Hopkins University, Baltimore, Maryland 21218

¹³National Laboratory for High Energy Physics (KEK), Tsukuba, Ibaraki 305, Japan

⁴ Lawrence Berkeley Laboratory, Berkeley, California 94720

⁵Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

 16 University of Michigan, Ann Arbor, Michigan 48109

 17 Michigan State University, East Lansing, Michigan 48824

¹⁸ University of New Mexico, Albuquerque, New Mexico 87131

⁹Osaka City University, Osaka 588, Japan

Universita di Padova, Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova, Italy

 21 University of Pennsylvania, Philadelphia, Pennsylvania 19104

 22 University of Pittsburgh, Pittsburgh, Pennsylvania 15260

 23 Istituto Nazionale di Fisica Nucleare, University and Scuola Normale Superiore of Pisa, I-56100 Pisa, Italy

²⁴ Purdue University, West Lafayette, Indiana 47907

²⁵ University of Rochester, Rochester, New York 14627

²⁶ Rockefeller University, New York, New York 10021

 27 Rutgers University, Piscataway, New Jersey 08854

 28 Academia Sinica, Taiwan 11529, Republic of China

²⁹ Superconducting Super Collider Laboratory, Dallas, Texas 75237

 30 Texas A&M University, College Station, Texas 77843

³¹Texas Tech University, Lubbock, Texas 79409

 32 University of Tsukuba, Tsukuba, Ibaraki 305, Japan

 33 Tufts University, Medford, Massachusetts 02155

³⁴University of Wisconsin, Madison, Wisconsin 53706 35 Yale University, New Haven, Connecticut 06511

(Received 7 March 1995)

We present a measurement of the mass of the W boson using data collected with the Collider Detector at Fermilab during the 1992—93 collider run at the Fermilab Tevatron. A fit to the transverse mass spectrum of a sample of 3268 $W \rightarrow \mu \nu$ events recorded in an integrated luminosity of ransverse mass spectrum of a sample of 3268 $w \to \mu \nu$ events recorded in an integrated iuminosity of 19.7 pb⁻¹ gives a mass $M_W^{\mu} = 80.310 \pm 0.205 \text{(stat)} \pm 0.130 \text{(syst)} \text{ GeV}/c^2$. A fit to 5718 $W \to e \nu$ events recorded in 18.2 pb⁻¹ gives $M_W^e = 80.490 \pm 0.145$ (stat) ± 0.175 (syst) GeV/c². Combining these results, accounting for correlated uncertainties, yields $M_W = 80.410 \pm 0.180 \text{ GeV}/c^2$.

PACS numbers: 14.70.Fm, 12.15.Ji, 13.38.Be, 13.85.Qk

The relations between gauge boson masses and the couplings of gauge bosons allow incisive tests of the standard model of the electroweak interactions. The relationships are precisely specified at Born level; higher-order radiative corrections are sensitive to the top quark mass M_{top} and the Higgs boson mass M_{Higgs} [1]. Measurements of the properties of the Z boson, as well as measurements in atomic transitions, muon decay, and deep-inelastic scattering, tightly constrain the relationship between allowed values of the W mass, M_W , and M_{top} [2]. Precise measurements of M_W and M_{top} , if inconsistent with the allowed range of predictions, could indicate the existence of new phenomena at or above the electroweak scale. Alternatively, within the confines of the standard model, such measurements predict M_{Higgs} . The measurement of the W mass is unique among electroweak measurements in its sensitivity to charged currents at large momentum transfer.

This paper summarizes $[3]$ a measurement of the W mass using $W \to \mu \nu$ and $W \to e \nu$ decays observed in antiproton-proton $(\bar{p}p)$ collisions produced at the Fermilab Tevatron with a center-of-mass energy of 1800 GeV. The results are from a data sample with an integrated luminosity of 19.7 pb^{-1} , collected by the Collider Detector at Fermilab (CDF) during the period from August 1992 to May 1993 [4].

The CDF [5] is an azimuthally and forward-backward symmetric magnetic detector designed to study $\bar{p}p$ collisions at the Tevatron. We briefly describe here those

aspects of the detector relevant to this analysis. The magnetic spectrometer consists of tracking devices inside a 3-m diameter, 5-m long superconducting solenoidal magnet which operates at 1.4 T. A four-layer silicon microstrip vertex detector (SVX) [6], located directly outside the beryllium beam pipe, is used to provide a precision measurement of the beam axis. Outside the SVX is a set of vertex time projection chambers (VTX), which provides $r-z$ [7] tracking, used to find the z position of the $\bar{p}p$ interaction (event vertex). Outside the VTX is the central tracking chamber (CTC), a 3.2-m long drift chamber used to measure the momentum of muons and electrons with up to 84 position measurements per track. The calorimeter is divided into a central barrel ($|\eta|$ < 1.1), end plugs $(1.1 < |\eta| < 2.4)$, which form the pole pieces for the solenoidal magnet, and forward/backward modules $(2.4 < |\eta| < 4.2)$. The calorimeters are constructed as projective electromagnetic and hadronic towers [5]. The towers subtend approximately 0.1 in η by 15° in ϕ (central) or 5° in ϕ (plug and forward). The energies of electrons are measured in the central electromagnetic calorimeter (CEM). Muons are identified with the central muon chambers (CMU), situated outside the calorimeters in the region $|\eta| < 0.6$. Momentum is the kinematic quantity necessarily measured for muons; for electrons we use the energy as measured in the calorimeter as it is much less sensitive to the effects of bremsstrahlung.

This analysis uses the two-body decays $W \rightarrow \mu \nu$ and $W \rightarrow e \nu$. Since the apparatus cannot detect the neutrino or measure the longitudinal component of the W momentum, there is insufficient information to reconstruct the invariant mass of the W. However, we can infer one additional kinematic quantity, the transverse component of the neutrino momentum, from a measurement of the transverse momentum imbalance in the calorimeters. For each event we have enough information to construct the transverse mass $M_T = [(\overline{E}_T^{\ell} + E_T^{\nu})^2 - (\overline{E}_T^{\ell} + \overline{E}_T^{\nu})^2]^{1/2}$, where \overline{E}_T^{ℓ} is the transverse energy [7] of the charged lepton (electron or muon), and \mathbf{E}_T^{ν} is the transverse energy of the neutrino. The measurement of M_W is obtained from a detailed analysis of the Jacobian line shape of the transverse mass distribution.

The transverse energy of the neutrino is calculated using the charged lepton energy or momentum and the net transverse energy of all other particles (the "recoil"), $E_T^{\nu} = - (E_T^{\ell} + \mathbf{u})$. The recoil **u** is calculated as **u** = $\sum_{i=1}^{n} E^{tower}(\hat{\mathbf{n}} \cdot \hat{\mathbf{r}}) \hat{\mathbf{r}}$, where the sum is over both electromag- $\sum E^{\text{tower}}(\hat{\mathbf{n}} \cdot \hat{\mathbf{r}}) \hat{\mathbf{r}}$, where the sum is over both electromagnetic and hadronic calorimeter towers, E^{tower} is the energy measured in the tower, $\hat{\bf{n}}$ is the unit vector pointing in the direction of the center of the tower from the event vertex, and $\hat{\mathbf{r}}$ is the unit vector in the radial direction [7]. The sum is carried out for towers in the region $|\eta| < 3.6$. Towers in proximity to the charged lepton are excluded from this sum; 30 MeV per excluded tower is added back in to account for average energy flow unrelated to the lepton [3].

The event selection is intended to produce a sample of W bosons with low background and well-understood lepton and neutrino kinematics. Electrons are required to be within a restricted fiducial region of the CEM and have $E_T^e > 25$ GeV [3]. Muons are required to be within the fiducial region of the CMU and to have $p_T^{\mu} > 25 \text{ GeV}/c$.
Neutrinos are required to have $E_T^{\mu} > 25 \text{ GeV}$. In addition, we require $|\mathbf{u}| < 20$ GeV, no jet [8] with $E_T > 30$ GeV, and no tracks with $p_T > 10$ GeV/c other than that of the charged lepton. Events consistent with cosmic rays or $Z \rightarrow \ell \ell$ are removed. The lepton track is required to come from an event vertex located within 60 cm of the detector center along the z axis. The $W \rightarrow \mu \nu$ sample consists of 3268 events with transverse masses in the range $65 < M_T < 100 \text{ GeV}/c^2$; the $W \rightarrow e\nu$ sample consists of 5718 events in the same M_T range. We estimate the background from the process $W \to \tau \nu \to \ell \nu \nu \nu$ to be 0.8% of the $W \rightarrow e\nu$ and $W \rightarrow \mu\nu$ samples. Events from $Z \rightarrow \ell \ell$ where one lepton is lost make up 0.1% of the $W \rightarrow e \nu$ sample, and $(3.6 \pm 0.5)\%$ of the $W \rightarrow \mu \nu$ sample. Backgrounds from $W \to \tau \nu \to h + X$, where h is a single charged hadron, $Z \rightarrow \tau \tau$, WW, and $t \bar{t}$ production, and cosmic rays are estimated to be small [3].

The momentum scale and resolution of the tracking system and the energy scale and resolution of the CEM are measured from the data. The CTC is aligned by requiring that the ratio of calorimeter energy to track momentum, E/p , be charge independent for high- p_T electrons. The momentum scale is determined from a sample of $\sim 60000 \frac{J}{\psi}$ decays [see Fig. 1(a)], which are also used to limit systematic effects on the scale such as nonlinearities and geometric variations. We find that the nominal scale should be corrected down by a factor of 0.99984 \pm 0.00058 [3] for the J/ψ mass to agree with the world average value, $M_{J/\psi} = 3096.88 \pm$ 0.04 MeV/ c^2 [9]. The scale is verified by measuring the Z and Y masses [3]. The uncertainty in the momentum scale, including the extrapolation from $M_{J/\psi}$ to M_W , contributes an uncertainty of 50 MeV/ c^2 on M_W (see Table I). The momentum resolution is determined from the width of the mass peak in a sample of 330 $Z \rightarrow$ $\mu \mu$ events [see Fig. 1(b)] to be $\delta p_T/p_T^2 = 0.000810 \pm$ $0.000085(stat) \pm 0.000010(syst)$ (GeV/c)⁻¹, and contributes 60 MeV/ $c²$ to the uncertainty on M_W .

The CEM tower responses are equalized using E/p for electrons in a sample of ~140 000 events with $E_T > 9$ GeV. The absolute CEM energy scale is The absolute CEM energy scale is transferred from the CTC momentum scale using E/p for electrons in the $W \rightarrow e\nu$ sample [see Fig. 1(c)]. This procedure contributes an additional 110 MeV/ $c²$ scale uncertainty on M_W for the $W \rightarrow e \nu$ channel (see Table I), of which 65 MeV/ c^2 is statistical, and 90 MeV/ c^2 is systematic [3]. The energy resolution is $(\delta E/E)^2$ = $[(13.5)\% \text{ GeV}^{1/2} / \sqrt{E_T}]^2 + [(1.0 \pm 1.0)\%]^2$, where the first term is measured with an electron test beam [10], and the second term is determined from a sample of

FIG. 1. (a) The dimuon mass spectrum near the J/ψ mass peak, used to normalize the momentum scale. (b) The dimuon mass spectrum near the Z mass peak, used to determine the momentum resolution. (c) The E/p spectrum for electrons from the $W \rightarrow e\nu$ sample, used to determine the energy scale. (d) The dielectron mass spectrum near the Z mass peak, used to determine the energy resolution.

259 $Z \rightarrow ee$ decays [see Fig. 1(d)]. The uncertainty in the energy resolution contributes 80 MeV/ $c²$ to the uncertainty on M_W . The width of the E/p distribution for the $W \rightarrow e \nu$ sample is described well by the measured resolutions in E and p. The reconstructed mass in $Z \rightarrow ee$ decays is also used as a check on the CEM energy scale [3].

The detector response to the recoil $|\mathbf{u}|$ is directly calibrated using $Z \rightarrow ee$ decays, for which there is a good measurement of the true p_T^Z from the measured electron

TABLE. I. Summary of uncertainties (in MeV/ $c²$) in the W mass measurement.

Uncertainty	ΔM_W^e	ΔM_W^{μ}	Common
Statistical	145	205	
Energy scale	120	50	50
Scale from J/ψ	50	50	50
CTC alignment	15	15	15
Calorimeter	110		.
Other systematics	130	120	90
e or μ resolution	80	60	.
Input p_T^W	45	45	25
Recoil modeling	60	60	60
Parton dist, functions	50	50	50
e or μ ID and removal	25	10	5
Trigger bias	0	25	
Radiative corrections	20	20	20
W width	20	20	20
Higher-order corrections	20	20	20
Backgrounds	10	25	
Fitting	10	10	
Total uncertainty	230	240	100

energies. The $Z \rightarrow ee$ event sample is used as a table from which one can look up the measured response $|u|$ for a given p_T^Z . We assume that the response to the recoil from a W of a given p_T is the same as that to the recoil from a Z of the same p_T .

Line shapes in transverse mass corresponding to different W masses are simulated with a leading-order (i.e., $p_T^W = 0$) Monte Carlo program using the Martin-Roberts-Stirling D' parton distribution functions [11]. The line shapes include contributions from significant backgrounds [3]. To model the line shape accurately, we need to incorporate a p_T^W spectrum in the simulation. The similarity of the p_T spectra of W and Z bosons observed in direct measurements [12] and in theoretical predictions [13] leads us to use the observed $Z \rightarrow ee$ p_T spectrum, corrected for electron energy resolutions, as an initial guess for the p_T^W spectrum. We modify the shape of this spectrum in order to match the observed u_{\perp} distribution for the W events, where u_{\perp} is the component of the recoil perpendicular to the direction of the charged lepton. We find that the simplest modification, scaling p_T in the p_T^2 distribution by a constant factor, gives good agreement for both electron and muon u_{\perp} distributions. We consider other modifications to the shape in estimating systematic errors; the uncertainty on M_W due to the modeling of the p_T^W spectrum is 45 MeV/ c^2 [3].

Transverse mass spectra are generated for a range of W masses, at 100 MeV/ c^2 intervals for $W \rightarrow e \nu$, and 150 MeV/c² intervals for $W \to \mu \nu$ [3]. The value of the W width used is $\Gamma_W = 2.064$ GeV [14]. At each mass point, an unbinned log-likelihood value is calculated for the hypothesis that the data are consistent with that mass. The log-likelihood values fit well to a parabola. The

FIG. 2. Transverse mass spectra for (a) $W \rightarrow \mu \nu$ and (b) $W \rightarrow e \nu$ decays. The arrows delimit the fit region.

transverse mass spectra and the Monte Carlo line shapes corresponding to the best fit mass are shown in Fig. 2. We add 168 ± 20 and 65 ± 20 MeV/ c^2 to the fitted masses in the muon and electron channels, respectively [3], to account for the effects of radiative W decay [15].

The value of the *W* mass extracted from the
 $\rightarrow \mu \nu$ data is $M_W^{\mu} = 80.310 \pm 0.205 \text{(stat)} \pm 0.205 \text{(stat)}$ $W \rightarrow \mu \nu$ 0.130(syst) GeV/ c^2 . The mass from the $W \rightarrow e \nu$ data $M_W^e = 80.490 \pm 0.145 \text{(stat)} \pm 0.175 \text{(syst)} \text{ GeV}/c^2$. is. Accounting for correlations in the uncertainties, the combined data yield $M_W = 80.410 \pm 0.180 \text{ GeV}/c^2$. Fits with the W width unconstrained yield consistent results [3].

The measurement uncertainties are summarized in Table I. The largest systematic uncertainties, beyond those of the momentum and energy scales described above, are due to the limitations on determining the electron energy and muon momentum resolutions, the W transverse and longitudinal production distributions, and the detector response to the recoil. Varying the parton distribution functions of the proton varies the distribution of the W longitudinal momentum, and, through acceptance effects, the line shape of the transverse mass spectrum, leading to an uncertainty on M_W . We use a measurement of the forward-backward charge asymmetry in W decays [16] to set a limit on this effect. Other sources of systematic uncertainty, each contributing 25 MeV/ $c²$ or less, are lepton identification (ID) and separation of the lepton energy deposit from the recoil energy sum, trigger bias, radiative corrections, the W width, higher-order QCD corrections to W production, backgrounds, and the fitting procedure. For the purpose of combining the $W \to e\nu$ and $W \to \mu\nu$ measurements, we also list in Table I those components of the uncertainties common to the two channels. Details on the methods used to determine the systematics, and the checks on the methods used, are given in Ref. [3].

FIG. 3. The CDF measurements of M_W and $M_{top} = 176 \pm$ 13 GeV/ c^2 [19], compared to a standard model calculation [20]. The bands represent folding in quadrature uncertainties on $\alpha(M_Z^2)$, M_Z , and $\alpha_s(M_Z^2)$.

This measurement of the W boson mass has an uncertainty half that of the best previously published measurements [17,18]. Figure 3 shows the sensitivity in the $M_W - M_{top}$ plane of this result, $M_W = 80.410 \pm 0.180 \text{ GeV}/c^2$, when combined with the value $M_{top} =$ 176 ± 13 GeV/ c^2 [19], compared to theoretical predictions based on electroweak radiative corrections [20].

We thank the Fermilab staff and the technical staffs of the participating institutions for their contributions. This work was supported by the U.S. Department of Energy and National Science Foundation, the Italian Istituto Nazionale di Fisica Nucleare, the Ministry of Science, Culture, and Education of Japan, the Natural Sciences and Engineering Research Council of Canada, the A.P. Sloan Foundation, and the Grainger Foundation.

*Visitor.

- [1] For a recent review, see W. Hollik and W. Marciano, in Precision Tests of the Standard Electroweak Model, edited by P. Langacker (World Scientific, Singapore, 1994).
- [2] J.L. Rosner, Rev. Mod. Phys. 64, 1151 (1992).
- [3] F. Abe et al., Fermilab Report No. FERMILAB-PUB-95/033-E, 1995 (to be published); R.M. Keup, Ph.D. thesis, University of Illinois, 1995; D.P. Saltzberg, Ph.D. thesis, University of Chicago, 1994.
- [4] The $W \rightarrow e \nu$ sample is from an 18.2 pb⁻¹ subset.
- [5] F. Abe et al., Nucl. Instrum. Methods Phys. Res., Sect. A 271, 387 (1988).
- [6] D. Amidei et al., Nucl. Instrum. Methods Phys. Res., Sect. A 350, 73 (1994).
- [7] The z (longitudinal) axis is along the proton beam axis; r is the transverse coordinate. Pseudorapidity (η) is $\eta = -\ln[\tan(\theta/2)]$, where θ is the polar angle.
- [8] F. Abe et al., Phys. Rev. D 45, 1488 (1992).
- [9] Particle Data Group, L. Montanet et al., Phys. Rev. D 50, 1173 (1994).
- [10] L. Balka et al., Nucl. Instrum. Methods Phys. Res., Sect. A 267, 272 (1988).
- [11] A. D. Martin, R. G. Roberts, and W.J. Stirling, Report No. RAL-92-099, 1993.
- [12] F. Abe et al., Phys. Rev. Lett. 66, 2951 (1991); F. Abe et al., Phys. Rev. Lett. 67, 2937 (1991).
- [13] M. H. Reno, University of Iowa Report No. UIOWA-94- 01, 1994.
- [14] F. Abe et al., Phys. Rev. Lett. 73, 220 (1994).
- [15] F.A. Berends and R. Kleiss, Z. Phys. C 27, 365 (1985); R. G. Wagner, Comput. Phys. Commun. 70, 15 (1992).
- [16] F. Abe et al., Phys. Rev. Lett. **74**, 850 (1995).
- [17] F. Abe et al., Phys. Rev. Lett. 62, 1005 (1989).
- [18] J. Alitti et al., Phys. Lett. B 241, 150 (1990).
- [19] F. Abe et al., Phys. Rev. Lett. 74, 2626 (1995).
- [20] The curves are calculated using a FORTRAN program from F. Halzen and B.A. Kniehl (private communication), described in Nucl. Phys. B353, 567 (1990).