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Anomalous Ion Diffusion in Dense Dipolar Liquids
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A self-consistent microscopic theory of the mobility of small ions in ultrafast dipolar liquids (like
water and acetonitrile) is presented. The theory takes into account the self-motion of the ion and
also the bimodal dynamics of the liquid. It is in excellent agreement with the experimental results.
In addition, the theory explains the anomalous increase in diffusion for large ions in water for the
first time.
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The mobility of small rigid ions in dense dipolar liquids
exhibits several anomalous properties that have captured
the attention of scientists for a long time [1—4]. Perhaps
the most dramatic of these is the total breakdown of the
Stokes-Einstein relation for small cations (such as Na+ and
Li+) [3,4] in highly polar liquids (like water and acetoni-
trile). Born [2] realized quite early that this breakdown
is due to an additional dissipative mechanism that origi-
nates from the coupling between the ionic field of the sol-
ute and the solvent polarization fluctuations. He coined the
term "dielectric friction" to describe this effect. Another
anomalous observation is that there is a significant en-
hancement of the mobility of large ions (such as Rb+, Cs+)
compared to ions of only slightly smaller size (such as K+).
However, the attempts to describe the dielectric friction,
by using the continuum model based calculations [3,4],
were unsuccessful as they overestimate the dielectric fric-
tion even by more than an order of magnitude. The limi-
tations of a continuum model description can be overcome
only by a microscopic formulation of this problem. Such
an approach was pioneered by Wolynes and co-workers
[1,5]; however, the earlier microscopic theories [5,6] were
not successful in explaining the experimental results. Even
the computer simulation studies [7] have failed to resolve
many of the outstanding issues in this field. It is therefore
of great importance to develop a detailed understanding of
the mobilities of small ions in dipolar liquids.

What now makes the study of ionic mobility in dipolar
liquids an even more interesting problem is the recent dis-
covery that the polarization relaxation in many common
dipolar liquids is strongly bimodal [8—11] with an initial
ultrafast Gaussian component (having a time constant of
about 50—100 fs) followed by a slow, exponential-like de-
cay (with a time constant of about 1 ps). The discovery
of this bimodal dynamics immediately raises the follow-
ing question: What can be the role of this ultrafast sol-
vent response in determining the diffusion of ions in these
liquids? In particular, one wonders whether the observed
anomalous behavior, mentioned above, could be attributed
to the bimodal dynamics of the solvent.

In this Letter we present a microscopic calculation of
the ionic mobility in the ultrafast dipolar liquids. There
are several novel features about this calculation. The
effects of bimodal solvent dynamics on ionic mobility
have been incorporated for the first time. Second, the
effect of the ion's own motion has been included via
a self-consistent calculation. Third, the details of ion-
solvent static correlations have been taken into account.
The results of this calculation are in almost complete
agreement with the long known experimental results. We
find that both the ultrafast dynamics of the solvent and the
self-motion of the solute are critical in determining the
mobility of the latter. The present theoretical formulation
also provides a physical explanation of this phenomenon.

The microscopic calculation presented here is based
on a simple physical picture. Consider a tagged, singly
charged ion in a dipolar liquid. For spherical solute
ions, the interaction between the ion and the dipolar
liquid molecules can be separated into two parts [1—6].
The first part originates from a short-range, spherically
symmetric potential that is primarily repulsive. This gives
rise to a friction that can be described (with certain
limitations) by the Stokes law. We shall refer to this
as the bare friction, go, and this is estimated by using
the expression go = 47rrjr;„„, where r;„„ is the radius
of the ion and g is zero frequency shear viscosity of the
liquid. The second part is due to the long-range ion-dipole
interaction and is termed the dielectric friction, for, this
is dominated by the long wavelength solvent polarization
fluctuations. Here, it is particularly important to note
that these long wavelength polarization fluctuations are
the ones primarily responsible [10,11] for the ultrafast
Gaussian solvation dynamics observed in experiments.
As the size of the ion decreases, go decreases, but go@
increases rapidly. The diffusion coefficient of the ion is
given by D = Ic~T/g, where g = go + goI; and kBT is
the Boltzmann constant times the absolute temperature. It
is, therefore, the dielectric friction part that is responsible
for the observed anomalous ion mobilities in the dipolar
solvents.
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The dielectric friction is determined by the ion-dipole
force-force time correlation function via the Kirkwood
formula [12]. The force density on the tagged ion is given
by [6,13,14]

F(r, t) = k~Tn;„„(r, t)V

2kpT pp
CDF (z) =

3(2 )2
dte

dk 0 ic d(k)i 5;,„(k, t) 5,'„i„„,(k, t), (2)

where c,d(k) and 5,„~„„„(k,t) are the longitudinal compo-
nents (that is, projection along the z axis in the k space) of
the ion-dipole DCF and the orientational dynamic struc-
ture of the pure solvent, respectively. pp is the average
number density of the solvent. 5;„„(k,t) denotes the self-
dynamic structure factor of the ion.

Equation (2) is a mode-coupling, nonlinear expression
that involves gDF(z) on both sides, and it has to be solved
self-consistently. This kind of approach is well known in
the existing literature of the mode-coupling theory [13—
15]. To obtain QDF from Eq. (2), we need to specify both
5„~„„,(k, t) and S;,„(k, t) The latte. r is assumed to be
given by

5;,„(k, t) = exp[ —DP"k t], (3)
where the diffusion coefficient of the ion, DT'", itself
it determined by the total friction g. The orientational
dynamic structure factor is given by

5,'„"„,„,(k, z) = (4)z+ k, z

where X(k, z) is the generalized rate of orientational
density relaxation of the solvent and can be evaluated
using the following expression [10,11]

X(k, z) = 1 — c(110;k)4~
2kpT k kpT

X +
1[z + r, (k, z)] 2[z + r, (k, z)]

'

where m, o., and I characterize the mass, the diameter,
and the average moment of inertia of each solvent mole-
cule, respectively. c(110;k) is the (110) component of

&& dr' dA' c;q(r, r', fl') Bp(r', A', t), (1)

where n;,„(r, t) is the number density of the tagged ion,
6p(r, 0, , t) is the Iluctuation in the position (r), orienta-
tion (0), and time (t) dependent number density of the
dipolar solvent, and c;q(r, r, B) is the ion-dipole direct
pair correlation function (DCF). 7' is the spatial gradi-
ent operator. Next, the density and the direct correlation
function are expanded in the spherical harmonics. We
then use the standard Gaussian decoupling approximation
to obtain the following microscopic expression for the di-
electric friction

the two particle direct correlation function of the sol-
vent in the wave-vector (k) space. I R (k, z) and I T (k, z)
are the rotational and the translational dissipative kernels,
respectively, of the solvent. I R(k, z) can be obtained
directly from experiments such as dielectric relaxation,
far-infrared (FIR) line shape, and Kerr relaxation mea-
surement of the neat solvent by approximating I R(k, z) by
its k = 0 limiting value. For example, I R(k, z) may be
related to frequency dependent dielectric function, e(z),
as follows [10]:

2keT (eo —1) z[e(z) —n2]

J[z + I g(k = 0, z)] 3Yn2 eo —(z)
(6)

where 3Y is the polarity parameter of the solvent with
dipole moment p, and is given as 3Y = (4'/3) Pp, po.
P = (k~T) '. eo and n are static and optical dielectric
constants of the solvent, respectively. In the present
calculations, I'R(k, z) for water has been obtained using
the above relation in the following way. The frequency
dependent dielectric function e(z) in the low frequency
regime is described by a Debye relaxation with a time
constant ~D equal to 9.3 ps, while at high frequency,
e(z) derives major contributions from the librational
and intermolecular vibrational motions of the hydrogen
bonded network. These high frequency motions appear
as three peaks around 700, 200, and 50 cm ' as found in
FIR line-shape studies. Similarly, I z(k, z) in acetonitrile
was obtained from the known experimental results of
the Kerr relaxation of this liquid [11]. I T(k, z) in each
case has been obtained using the known value of the
respective translational diffusion coefficient, DT. For
water, additional contributions from the intermolecular
vibrations have also been taken into account [10].

The static ion-dipole direct correlation function c;d(k)
is obtained using the mean spherical approximation
(MSA) given by Chan, Mitchel, and Ninham [16] in the
limit of zero ionic concentration. The other important
input is c(110;k), which has again been obtained from
MSA corrected for both the limits of k ~ 0 and k ~ ~
by using the XRISM results of Rainari, Resat, and Fried-
man [17]. The details are available elsewhere [10,11].
It should be emphasized that the above procedure gives
nearly perfect agreement between theory and experiment
for solvation dynamics in water and acetonitrile [10,11].
We have used T = 298 K in all the calculations.

In Fig. 1, the generalized rate of solvent polarization
relaxation, g(k, t), is plotted as a function of time for
two different wave vectors to show the bimodal response
of the liquid. It is clear that the relaxation of the
macroscopic (that is, k = 0) polarization modes occurs
on a time scale much shorter than that of the microscopic
(that is, ko. = 27r) polarization modes.

The experimental results on ionic mobilities are most
conveniently represented by plotting the inverse of an
"apparent" Stokes radius rst, k„against the inverse of
the crystallographic radius, r;,„. The Stokes radius is
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FIG. 1. The generalized rate of solvent pot olarization relaxation
X(k t) in water is plotted as a function

' '

pn of time in s for two dif-
ferent values of the wave vector k. +(, )+ ik ti has been evaluate
using Eq. 5). The solid and dashed lines represent the macro-

krr = 0) and the microscopic (ko = 27r) polarization
relaxation of the solvent, respective y. e „ar
characterize the solvent are aas follows: eo = 78, n

=187D, p0=003335A, o =28A, g = . c
= 2.5 X 10 cm s '. For details of the full fre-

queuency dependence of e(z), see e . [ ].
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evaluated using the relation Fstokes ~ion

where gDF = QDF(z = 0) is obtained by solving q. (2)
self-consistent y.entl . The results of our calculation for wa-
ter and acetonitrile are shown in Figs. 2 and 3, respec-
tive y, an corn
ments. The agreement is clearly excellen .
ties of ions calculated from the Stokes law, the continuum
theor of Zwanzig, and the overdamped, Markovian the-t eoryo w
or of Colonomos-Wolynes (CW) are also s o
figures. For smaller ions such ass Li+ the dielectric fric-
tion becomes o i5 t 6 times larger than the bare friction it-
self, thereby invalidating the Stokes law. Consequent y,
the mobilities of the smaller ions become much less than
the values calculated from Stokes law and exhibit a pro-
nounced diffusion anomaly. The present calculations re-

imodal solventveal that the ultrafast Gaussian part of the bimo a
response p ayse lays an important role in determining the mo-

onent is1 of the ions. In fact, if this Gaussian componen is
lected then the ion experiences a much arger

m arable to thatand the calculated mobility becomes compara e
a sone lected

dh h
d d b Zwanzig. This component was a so g

b CW in their calculation of friction in water, an u
mobilities were underestimated. Howeve,ver the reason for
the overestimation of the same by CWCW in acetonitrile is not
precisely known and remains a puzzle to us.

As shown in ig.F 3 the present theory could quanti-
tatively reproduce the abnorma y gall hi h diffusion coeffi-
clen s 0t f the large ions (for example, ss+ and Rb ) in

thiswater. Wit in eW h th framework of the present theory,

FICJ. 2. The inverse of the calculated Stokes radtus (rs,„q„
is lotted against the inverse of the crystallographic radius
r in acetonitri e. e sor l . Th olid line denotes the results of

h' h are compared with the Stokesthe present theory, w ic are c
d line) and the known experimental results (openlaw (dashe ine an

of Zwanzi andcircles). The predictions of the theories o w g
Colonomos-Wolynes (CW) are aalso shown. Stokes law is
found to be valid for large tetra-alkyl ammonium ions Ct — 4,= &CHq), N+. The following parameters are used
for acetonitrile: p, = 3.97 D, po =
g=0.34cp, Dz-=4.3X10 cm s ', and ~&= . ps.
For further details, see the text.

fc kcan be explained by examining the explicit form o c;d
given by Chan, Mitchel, and Ninham [16]. When the size
of the ion becomes comparable to that of the solvent, t e
hard-sphere Percus-Yevick part of c;d acts against its elec-
trostatic part, an is red th suits in a partial reduction of the
orientational order. This enables the ion to move more
freely in t e so ven.h 1 nt. This effect is often termed the mi-
croscopic s rucic "structure breaking" of the liquid [I8 . T e en-

otionhancement of the ionic mobility due to the self-mo ion
is anot er interes ing oh t g observation of this calculation. s

or theexpecte, t is par icud, h t lar feature is most important for t e
light solute ions i e i1 k Li our microscopic theory gives
a value for the mobility of Li in water, which is 2 o

greater than that calculated in the fixed-solute case.
The success o e af the above calculations motivated us to

examine the diffusion coefficient of a charge bubb e in
water —the bubble is assumed to be of the same size

t r molecule. The only difference is that t isas a water mo ecu
bubble does not experience any bare friction.
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ionic mobility from first principles and, at the same time,
explain the anomalous diffusion behavior of small ions.
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one assumes that the bubble-dipole direct correlation
function is still given by the MSA, then the self-consistent
calculation gives a value of 2.2 X 10 cm sec ', which
is surprisingly close to the known diffusion coefficient
of a solvated electron in water [19]. However, this
calculation is only suggestive because the electron-
dipole direct correlation function should be calculated
quantum mechanically. We leave this as a future problem.

How a charge moves from place to place is a question
that is likely to remain relevant for some time to come-
so was the prophecy of Wolynes in his classic review [I]
on the ion-solvent dynamics. In this Letter we show that
it is possible to take into account many different aspects of

FIG. 3. The inverse of the calculated Stokes radius (rs,„k„)
is plotted against the respective crystallographic radius (r;,„) in
water. The representation remains the same as in Fig. 2. The
relevant solvent parameters required to estimate rs„k„ in water
are the same as in Fig. 1.
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