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Nonlinear Dynamics of Stiff Polymers
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A formalism is presented for the nonlinear dynamics of inextensible stiff polymers within the model
of local viscous dissipation. By casting the internal elastic forces in an intrinsic representation,
enforcing the constraint of local inextensibility through a Lagrange multiplier function, and utilizing
techniques from the differential geometry of curve motion, the dynamics of configurations of arbitrary
complexity is reduced to a scalar partial differential equation amenable to analytical and efficient
numerical study. As an example, the formalism is applied to the "folding" dynamics of stiff polymers
with pairwise self-interactions and intrinsic curvature.
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Imaging and manipulation techniques capable of
probing the conformation and dynamics of biological
macromolecules have revealed a variety of phenomena
involving complex molecular configurations. Among
these are long DNA molecules undergoing electrophoretic
motion in structured environments [1] and collapse from
near full extension [2], and actin filaments moved by
molecular motors on surfaces [3]. In contrast to studies
focusing on the statistical properties of ensembles of
molecules, these studies are dynamical investigations of
single molecules.

Central features of these dynamical phenomena are the
inextensibility and finite bending elasticity of the poly-
mers. A natural continuum model with these features, the
Kratky-Porod or "wormlike" model [4], derives from the
elastic theory of thin rods with an energy quadratic in
the local curvature. The study of equilibrium aspects of
this model is highly developed [5,6], but its dynamical
properties in viscously dominated How are far less well
understood. Dynamical formulations that address inexten-
sibility date back to the important work on stiff polymers
of Harris and Hearst [7], and others [8] who have em-
phasized the fundamentally nonlocal nature of this con-
straint. It has been touched upon as well in more recent
studies of electrophoresis [9], hairpin defect motion in

polymeric liquid crystals [10], supercoiled DNA [11),and
motility assays [12), but no general method has been
proposed to answer the basic question: What is the
motion of a nonstretching flexible polymer in a viscou s

medium?
Here we develop a unifying formalism for the dynamics

of flexible but inextensible polymers within the simplest
hydrodynamic model in which the polymer is subject to
local viscous forces. The methods are completely general,
capable of incorporating both local and nonlocal energetic
contributions including elasticity with intrinsic curvature,
pair interactions among polymer segments, and external

forces. They are also completely intrinsic, making no ref-
erence to any idealized reference shape. This is particu-
larly important since from the foundations of elasticity
theory [5) we know that the mathematical problem of the
equilibrium configurations of such an object is intrinsically
nonlinear, and we must expect the same for the dynamics
[10]. These nonlinearities arise from the fact that the arc-
length parametrization s of a space curve is not indepen-
dent of its position vector r(s), and while unimportant for
weakly curved configurations these nonlinearities are es-
sential for the many complex experimentally observed con-
formations. Utilizing geometrical methods we reduce the
intrinsic nonlinear shape evolution to an extremely com-
pact form as a pair of coupled partial differential equations
(PDE's) of a type familiar in the field of pattern formation
[13], and for which there are highly developed computa-
tional methods.

The complex dynamical processes that may be described
by these methods are illustrated with the model problem
of a competition between bending elasticity and a pair
potential having a short-range repulsion (preventing self-
crossing) and an attractive minimum. These elastic and
potential forces are mutually frustrating; in order for seg-
ments widely separated along the curve to be in the at-
tractive minimum there must be energetically costly bends
in the chain. This deterministic "folding" problem is one
of the simplest in which to address such issues as the
uniqueness of ground states and the pathways to them [14].
In this regard, we expect these methods to be useful in
theoretical studies of gene regulation and topoisomerase
activity.

The equations of motion derive from an action prin-
ciple used often in polymer physics [15] and recently
for interfaces and membranes [16]. The polymer is
parametrized by n H [0, 1], with generalized coordinates
r(n) and velocities r, (n). If L is the Lagrangian and
R is the Rayleigh dissipation function, the equations of
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dn ~g/r, /,R =— (2)
2 0

where g = r r is the metric. Since the motions of
interest occur at extremely small Reynolds numbers, we
neglect inertial terms, the dynamics becomes first order
in time derivatives, and the Lagrangian is simply the
negative of the general potential energy functional X[r].
Rewriting (1) in terms of functional derivatives,

1 BX
gr, =— —= Un+ Vb+ Wt,

~g Br
where n, b and t are the unit normal, binormal, and
tangent vectors and U, V, and W are the associated
forces. Equation (3) is like the Rouse model [17],
but allows for an arbitrary energy functional X' rather
than the simple collection of Hookean springs originally
considered in that context. Generalizations of (3) to
stochastic dynamics will be described elsewhere.

The no-stretching or local arclength conservation con-
dition (also clearly enforcing fixed total length) is imposed
with a Lagrange multiplier function A(n),

1

(3)

dn ~gA(n).
Consider first the geometrically simplest case of a poly-
mer confined to the plane, and let Up and Wp be those
forces derived via Eq. (3) from the intrinsic energy func-
tional Xp alone. Functional differentiation of (4) yields
total normal and tangential forces

U = Up + AK and W = Wp —B,A. (5)
The curvature K(s) is determined by the Frenet-Serret
equations t, = —Kn and n, = Kt. In Eq. (4) we see
that —A plays the role of a locally varying line tension
[9], and thus its contributions to (5) can be interpreted
as a Young-Laplace force in the normal direction and a
Marangoni force in the tangential direction.

Local inextensibility requires a time-independent met-
ric. This implies t . B,r, = 0, which from (3) leads to

B,W = —KU, (6)
known also in the context of integrable nonstretching
curve dynamics [18,19]. Using Eqs. (5) and (6), we find
that A obeys an elliptic ordinary differential equation at
each instant of time [20]:

(6„—K )A(s) = KUp + B,Wp. (7)
Equations (3)—(7) constitute a complete dynamical de-
scription of the polymer shape evolution once an energy
functional Zp is given.

As a sample problem, consider a polymer with bending
elasticity and a monomer pair interaction. The elastic

motion are

d aL BX aK
(1)

dt Br, (n) (ir(n) (lr, (n)
'

R measures the rate of energy dissipation by the viscous
forces, and is quadratic in the velocities. Assuming local,
isotropic drag with friction coefficient g,

Ue = A(Kss + 2 K (ass Kp 2 K Kp),
1 1

W, = A(Kp —K)(1,Kp.

Note that for closed polymers an s-independent Kp does
not enter the dynamics since both of its contributions
to the energy (8) are constant if the polymer length and

topology are fixed.
If the polymer experiences an external potential V or a

pair interaction (I) (e.g. , from electrostatic, dispersion, or
steric forces), it has energy functionals

Z~ =
wads

V)'((s)),
1

'Eq, = — ds ds'(I)(R),
2

where R = ~r(s) —r(s')~. These produce purely normal
forces

U~ = —(K + n V', (,l)V

U@ = —(» + )) . '7„(,)) $ds' d)(R) .

The invariance of the dynamics under redefinitions of the
zero of V and C) is easily verified by noting from (11)
that if, for instance, V .- V + c the bare normal force
transforms as Up .. Up cK. Equation (7) shows that
this corresponds to the shift A .- A + c, so the total
force Up + AK is unchanged.

In the absence of potentials V and (I), and with Kp =
0, the normal velocity is U = A[K„+ (I/2)K ] + AK.
For constant A this gives the "curve-straightening equa-
tion" [21], and U = 0 defines Euler elastica in the plane
[5]. It resembles "geometric'* models of interface motion
[22] used for dendrite growth, which invoke expansions
of U in powers of the curvature and its derivatives, but it
arises here from a variational formulation not envisioned
in those nonequilibrium processes.

The intrinsic dynamical evolution is completed by
following the time dependence of the tangent angle
0(s) or curvature K(s) = 0, according to the PDE's
[22], $0, = B,U +—6), W and gK, = —(8„+ K )U +
K, W. Apart from the clear simplification of considering
scalar rather than vector PDE's, these intrinsic dynamics
allow for a natural treatment of the inherent numerical
stiffness associated with elastic forces. Note that the 0
and K evolutions both have the form gu, = —Au„„+
~ ~, where the ellipsis stands for nonlinear terms and
terms of lower order in s derivatives. The fourth-order
derivative severely limits the acceptable time steps in

contribution to the energy 'Ep is

1
X', = —A dS(K —Kp),

in which we have included an intrinsic curvature Kp(s),
and where A is an elastic constant. Eq. (8) leads to
nonlinear forces
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V, = A(2', r—+ sar, ), (13)

and W, = 0, conspire with (12) to present a formidable
computational problem. Moreover, the torsion dynamics
is problematical at inflection points, where ~ = 0.

The curve dynamics can be drastically simplified by
utilizing Hasimoto's transformation [24] relating vortex
filament motion to the nonlinear Schrodinger equation.
Define the complex curvature

standard finite-difference schemes, but by its linearity
may be treated exactly in pseudospectral methods utilizing
integrating factors [23].

The treatment of space curves involves both the curva-
ture ~ ~ 0 and the torsion ~, obeying the Frenet-Serret
equations t, = ~n, n, = —~t + 7.b, and b, = —7.n.
The curve dynamics may be studied directly at the level
of the evolution equations for ~ and ~,

g~t =GU —2V+ t~, W,

gr = cl [K (GV + 2 U)t + 2KTU K V + r, W.

(12)

where 6 = il„+ tr —r and 2' = 2rr), + r, . These
are unnecessarily complicated. Indeed, the forces
that arise from the simplest elastic energy ['E, =
(A/2) $ds trz],

U, = —A(tr„+ ztr —ter ),

is how the presence of preferentially curved segments
may determine the chosen folded configurations of an
elastic polymer. In the context of DNA supercoiling there
is experimental [28] and theoretical evidence [29] for
the localization of regions of high intrinsic curvature at
hairpin loops, an effect that may be relevant to structural
regulation.

Figure 1 shows the succession of straightening pro-
cesses that takes a highly distorted initial configuration
to a ground state having three hairpin loops [30]. These
shapes have length I. = 10 X 2~, with a Lennard-
Jones potential 4(r) = 4e(r ' —r ) of strength
e/A = 0.05, and a spontaneous curvature ~o(s) having
three plateaus (as shown in the lower panel). The three
regions along the chain in which ~o ) 0.5 are indicated
by heavy lines, and it is apparent that the relaxation
process indeed localizes the regions of intrinsic bend at
the hairpin loops. The two sequences shown have the
same initial condition, but the second has the peaks in

Kp(s) shifted along the chain. We see that this same
ground state (modulo rotations and reflections) may be
obtained even when the peaks in ~0 do not correspond to
those in the initial condition; these and other results show
in at least a limited sense that this ground state is reached
independent of initial conditions. As an aside, we note
that these structures bear an intriguing resemblance to
those of transfer RNA.

P(s, t) = I~(s, t)e'@, ds' r(s', t), (14)

and the complex velocity I perpendicular to the curve,

I = (U + iV)e'@. (15)

Then for general U, V, and W, P obeys [19]

ds' Q, I" + P, W.

(16)

Three important features arise from this formulation.
(i) The form of I, = (U, + iV, )e'@ is remarkably com-
pact:

(17)

(As noted previously [25], nonplanar elastica [26] are
defined by the time-independent nonlinear Schrodinger
equation I, + AP = 0.) (ii) The dynamics of inflec-
tion points is mathematically well defined, behaving
much like phase slips in one-dimensional superconduct-
ing wires [27]. (iii) The dynamics g P, = —A P„„+
is again amenable to integrating factor methods. Finally,
by defining the complex vector co = (n + ib) exp(iP),
the Frenet-Serret equations become cu, = —Pt, cu,

" =
—P*t, t, = (P'cu + Pcu")/2, and the curve may be re-
constructed from P and P* alone.

We turn finally to the folding problem described in
the introduction. The issue we address by simulations

1.0—

0.0

0.2 0.4
s/L

0.6 0.8 1.0

FIG. 1. Folding of a closed elastic polymer in two dimen-
sions. Time evolution proceeds from upper left to lower right.
Regions of the polymer for which Kp(s) ) 0.5 (lower panel) are
indicated by heavy lines. Two temporal evolutions are shown
(black and gray), corresponding to the same initial condition,
but with a displacement of the function Ko(s) along the chain.
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We expect that the methods outlined will be useful
in the context of the full hydrodynamic problem of
stiff polymer dynamics with its associated long-range
interactions [17,31], and related studies of the motion of
defect lines in liquid crystals [32]. They may also be
generalized to include an internal twist degree of freedom
relevant to supercoiling, and to allow for local stretching,
relevant to recent experiments on DNA "combing" by a
moving meniscus [33]. Other applications include the
more abstract problem of nonlocal relaxational dynamics
of knotted space curves [34].
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an NSF Presidential Faculty Fellowship (Grant No. DMR
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