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Spin Blockades in Linear and Nonlinear Transport through Quantum Dots
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The transport properties of a quantum dot that is weakly coupled to leads are investigated by using
the exact quantum states of a finite number of interacting electrons. It is shown that, in addition to
the Coulomb blockade, spin selection rules strongly inhuence the low temperature transport and lead to
experimentally observable effects. Transition probabilities between states that correspond to successive
electron numbers vanish if the total spins differ by ( BS () 1/2. In nonlinear transport. , this can lead to
negative differential conductances. The linear conductance peaks are suppressed if transitions between
successive ground states are forbidden.

PACS numbers: 72.20.Ht, 73.20.Dx, 73.20.Mf, 73.40.Gk

Periodic oscillations of the linear conductance of quan-
tum dots in AIGaAs/GaAs heterostructures are well es-
tablished consequences of the Coulomb repulsion between
the electrons at sufficiently low temperatures [1,2]. They
are observed as a function of the carrier density which can
be tuned via an external gate voltage. When the quan-
tum dot and the reservoirs are weakly coupled, transport
is dominated by the quantum mechanical properties of
the isolated dot. For small transport voltages and at low
temperatures the current is blocked (Coulomb blockade)
if pt. = ptt 4 Ep(n) —Eo(n —1). p, t.hatt

is the chemi-
cal potential of the left (right) reservoir, Eo(n) the ground
state energy of n electrons in the dot. On the other hand,
if p, t. = p, g = Eo(n) —Eo(n —1), the number of elec-
trons inside the dot can oscillate between the two values n

and n —1 [single-electron tunneling (SET) oscillations],
and the current is nonzero.

For finite transport voltage V = (p, L
—p, R)/e ) 0,

transitions between excited states of the confined electrons
can also contribute to the electronic transport [3—6].
Additional steps in the current occur when V is enlarged.
However, the current is not necessarily increased when,
by raising V, the number of transitions between n and n-
l electron states is increased. Spin selection rules can
suppress certain transitions and thus reduce the current.
This happens, for instance, if the electrons in the dot
are spin polarized and the total spin 5 = n/2 Then, t.he
electron number can only be decreased by simultaneously
reducing the total spin [7]. The basic mechanism of this
spin blockade effect was discovered by using a quasi-one-
dimensional (1D) model for the spectrum of the quantum
dot. Negative differential conductances were observed in
some of the nonlinear transport experiments [3—6]. In
other experiments, it was observed that certain peaks in
the linear conductance, which were almost vanishing at
very low temperature T, could be recovered by increasing
T [8].

In this Letter, we present strong evidence for the spin
blockade effect as an explanation of the experimental find-
ings. We consider n-electron states in square quantum

dots and present novel results which are associated with
low-lying excited states that do not necessarily have max-
imum spin. We show that even in linear transport the cur-
rent may be suppressed by spin effects, namely, if the total
spins of the ground states of successive electron numbers
differ by more than 1/2. The corresponding characteris-
tic and counterintuitive dependencies on temperature and
transport voltage of the conductance peaks are observed in
experiments [8,9]. Finally, we demonstrate that negative
differential conductances can occur close to a conductance
peak already at very low transport voltages as observed ex-
perimentally. This happens if an excited state with large
total spin lies energetically close to the ground state.

As previously, we use the double barrier Hamilton-
ian H = Ht + HR + Ho + Ht + Hq [7]. Here, HLitt
describes free electrons with spin in the left/right lead.
The electrons in the dot are described by H~ = Ho + HI.
Ho = gt (et —e4)ct ct ~ corresponds to the noninter-t

acting electrons with energies ~~. The gate voltage V~
and the capacitive influence of the voltages applied to the
leads are assumed to be incorporated into an electrostatic
potential 4. HI is the Coulomb interaction between the
electrons including spin.

The barriers are represented by tunneling Hamilto-
L/R j.

nians Hr(R = Z „,(Tk t cLt~ „ct+ H.c.), where
L/R

TI, I are the transmission probability amplitudes. We
further assume that the leads are in thermal equilib-
rium with reservoirs described by the Fermi —Dirac
distributions ft.t~(e) = [exp[P(e —pt. t~)) + I} '. The

transmittances tt.t~ ~ ~Tk&~~ of the two barriers can be
L/R

different. The current is mainly restricted by the smaller
of the tL/R. For simplicity, they are assomed to be
independent of energy and spin. If they are small as
compared to the phase breaking rate r ', the (reduced)
density matrix for the quantum dot can be assumed to
be diagonal. In this limit, the time evolution of the
occupation probabilities can be described by a master
equation which allows one to consider transport at
arbitrary voltages.
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The transition rates between the n-electron states of the
dot ( i) are calculated in lowest order perturbation theory
in HT. Simultaneous transitions of two or more electrons
[10] are of higher order in Hr and neglected. Each of
the states is associated with a certain electron number n;,
an energy E;, a total spin S;, and a magnetic quantum
number M;. When calculating the energy levels of the
electrons by diagonalizing the corresponding n-particle
Hamiltonian, the interaction is fully taken into account.
This is in contrast to previous investigations [11—13],
where transitions between the states were considered
within the "charging model. "

An electron that leaves or enters the dot through the
left (right) tunnel barrier causes transitions between ~i)
and

~ j). The corresponding rates are

JE

n, S=n/2 n —1, S' (2)

that reduce the electron number starting from the spin
polarized state must also reduce the total spin to S' =

x f,r, (z)~„,, i + (( —fv~( E))(„,„,i). —

The electron has to provide the energy difference F =
FJ. —F;. Most importantly, the rates contain Clebsch-
Gordan coefficients ( .

~

. . )co. They account for the
combination of the spin of the incoming or leaving
electron with the spin of the initial dot state to the spin of
the final dot state and introduce spin selection rules. The
quantum numbers S; and M; can be changed only by ~1/2
when one electron enters -or leaves. At zero magnetic
field when the states with different magnetic quantum
numbers M; are degenerate, an average yields effective
spin dependent factors which favor an increase of the total
spin [7]. The spin selection rules are a consequence of
using the exact correlated n-particle states.

The matrix of the total transition rates between the
states of the isolated dot is given by I = I L + I ~. The
stationary nonequilibrium populations P; obey

g (I;,P, —I,;P, ) = 0.
j(jwi)

They determine the dc current for arbitrary V via

I = (+/ —)e g P~I";~ (n; —nj) . (1)
i,j (jwi)

It equals the number of electrons that pass the left or the
right barrier per unit of time.

The spin selection rules inhuence the transport proper-
ties qualitatively. In addition to the Coulomb blockade,
further new blocking mechanisms occur. Dne of them is
the "spin blockade" discussed previously [7]. It results
in negative differential conductances and is related to the
population of states with maximal spin S = n/2. They
occur as excited states both in 1D [14] and in 2D [15]
quantum dots. The transitions

(n —1)/2. In contrast, states with S ( n/2 can either
increase or decrease S. Thus, the S = n/2 state is stable
for relatively long times. As a consequence, the current is
reduced when a state with S = n/2 can be occupied. This
spin blockade appears at transport voltages of the order of
the excitation energies of the S = n/2 states.

The differential conductance versus gate and transport
voltage, VG and V, is shown in Fig. 1 in a grey-scale
representation. Along the V = 0 axis the peaks in the
linear conductance can be observed with the intervals of
the Coulomb blockade in between [2]. Lines that intersect
at the positions of the peaks in the linear conductance
correspond to the ground state to ground state transitions.
The regions of the Coulomb blockade are the diamond-
shaped areas between these lines. The lines parallel to
the edges of the Coulomb blockade areas reflect the dot
spectrum [9,16]. Similar features have been observed in
experiments [6]. When either Vo or V are changed, the
set of the dot states involved in the transport changes. At
T = 0, this leads to jumps in the current. In Fig. 1 (left)
the energy spectrum of a 1D quantum dot [15] has been
used. In general, a finite transport voltage V broadens
the conductance peaks and leads to fine structure which
is characteristic for the dot spectrum and is in general
asymmetric [3,17]. The asymmetry is reversed when
reversing the voltage [7,18] if the barriers are not equally
transparent, in agreement with experimental findings [4].
Bright regions that correspond to negative differential
conductances occur preferably when the lower chemical
potential is attached to the less transmitting barrier and
transitions of the type (2) limit the current.

Another spin blockade effect occurs if the total spins
of the ground states that correspond to electron numbers
n and n —1 differ by more than 1/2. It can even be
observed in linear transport, namely, when

(Eo(n), S)::(Eo(n —1), S'), [S —S'I o 1/2.

(3)
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FIG. 1. Differential conductance versus gate V~ and trans-
port voltage V in units of FH/e Zero conductance . inside
the diamond-shaped Coulomb blockade regions (V = 0) cor-
responds to grey. Dark and bright parts indicate positive and
negative differential conductances, respectively. Left: 1D dot.
Bright regions are preferably found for V ( 0 since tz = tR/2
7. Right: 2D square dot. Transition between the ground states
for n = 4 and n = 5 is forbidden by spin selection rules.
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FIG. 2. Current versus gate voltage for a square quantum
dot. Left: Transport voltage increases. Curves with growing
line thickness correspond to V = 0.04, 0.06, 0.1, 0.2 in units of
EH /e Righ. t: Temperature increases. Increasing line thickness
corresponds to PEH = 100, 80, 60, 40, 20. The missing peak in
linear conductance corresponding to transitions between n = 4
and n = 5 electrons is recovered (arrow). Unusual behavior
of the peak corresponding to the transition between n = 3 and
n = 4 is due to the weakness of the ground state to ground state
transition and the population of excited levels with increasing
temperature or voltage.

Then the dot is blocked in the n or the (-n —1)-electron
ground state, and the corresponding peak in the linear
conductance is missing at zero temperature. At finite
temperatures and/or transport voltages excited states with
appropriate spin values become populated. This can lead
to the recovery of a spin-forbidden conductance peak.
Such a spin blockade is specific for 2D quantum dots.
In 1D the Lich-Mattis theorem guarantees that the spins
of the ground states are always 0 or 1/2 (depending on
the parity of n). Thus in a "slim" quantum dot no linear
conductance peak should be missing.

Figure 1 (right) shows the differential conductance
through a square, hard wall quantum dot. The low
energy spectra have been calculated in the low electron
density limit by using the method described in [15]. In
contrast to 1D dots, states with high spin occur already
at low excitation energies and lead to new effects. One
prominent feature is the lack of the conductance peak
corresponding to the transition between n = 4 and n = 5
electrons since the spins of the ground states are S =
0 and 5 = 3/2, respectively. Finite transport voltages
or finite temperatures cause transport through excited
states with spins S = 1 (n = 4) and S = 1/2 (n = 5).
The voltage- or temperature-induced recovery of the
conductance peak is shown in Fig. 2. Such an effect was
indeed experimentally observed [8].

States with high spin, not necessarily completely spin
polarized and which are energetically close to the ground
state, can cause additional blocking phenomena. This
is shown for the transition between n = 3 and n = 4 in
Fig. 3. In contrast to the spin blockade (2) discussed pre-
viously [7], the new mechanism (3) can lead to negative
differential conductances even close to the linear conduc-
tance peak. Here the lowest n = 3 states with 5 = 3/2 and
5 = 1/2 are almost degenerate (their energetic difference
is lower than the temperature we have chosen). Within
the Coulomb blockade region all transition rates that in-
crease the electron number are exponentially small. At
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FIG. 3. Left: Region around the transition between n = 3
and n = 4, magnified and with the energy of the n = 3;
S = 3/2 state being close to the n = 3; S = 1/2 ground
state. At low but finite transport voltage the S = 3/2 state
becomes populated and transitions to the n = 4 ground state
are spin forbidden. Negative differential conductances appear.
Right: Same region but now showing the population of the
n = 3; S = 3/2 state in dark. If the transport voltages are
sufficient to occupy the S = 3/2 state it is easily populated,
but depopulation is difficult.
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FIG. 4. Left: Region around the transition between n = 3
and n = 4, magnified and with the energy of the S = 3/2 state
being slightly increased. At low but finite transport voltage the
ground state to ground state transition is blocked and negative
differential conductances appear. Right: Same region but now
showing the population of the n = 3; S = 3/2 state in dark.

V = 0 the system is in thermal equilibrium and the three-
electron ground state is populated. Already a slightly in-
creased voltage changes the ratio between certain rates by
orders of magnitude, favoring the occupation of the 5 =
3/2 state (cf. Fig. 3). This is due to a delicate interplay
between multiple transitions that connect eventually the
lowest n = 3 states via at least three intermediate states.
Transitions from the 5 = 3/2 state to the n = 4 ground
state are spin forbidden which causes the pronounced neg-
ative differential conductance at low voltages.

In order to simulate the spectrum of a rectangular dot,
we enhance slightly the energy of the n = 3;5 = 3/2
state. Figure 4 shows the differential conductance and
the stationary occupation probability of this state. Now,
the region of negative differential conductance is shifted
in V by the excitation energy of the S = 3/2 state. When
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the n = 3; S = 3/2 state starts to contribute to the trans-

port, it attracts a large portion of the population at the
expense of the n = 3;5 = 1/2 ground state. This sup-
presses the ground state to ground state transition. Only
at even higher voltages the 5 = 3/2 state can again be
depopulated, and the line corresponding to transport in-
volving the ground states is recovered. Striking features
like this can also be detected in the grey —scale represen-
tations of the experimental results [6].

In summary, we have shown that spin selection rules
qualitatively infIuence the transport properties of semi-
conducting quantum dots where electron correlations are
important. The excitations of the n-electron system can-
not be described by the occupation of single-electron
states. Instead, the states that describe the n correlated
electrons have to be used, with the total spin as a good
quantum number. The latter is changed when an elec-
tron enters or leaves the dot. Quantum mechanical selec-
tion rules explain in a natural way various experimental
observations which cannot be accounted for within the
"charging model" where excitations are treated within a
one-particle model.

We have proposed two different spin blockade ef-
fects. One is related to spin-polarized n-electron states.
It leads to negative differential conductances in the non-
linear regime. The other is a more general mechanism. It
occurs, for example, when the total spins of the ground
states of n and n —1 electrons differ by more than
1/2. This influences the heights of the linear conduc-
tance peaks and is of particular importance for 2D quan-
tum dots. The present results do not include the spatial
dependence of the wave function. Preliminary investiga-
tions show that the blockade effects discussed here are
not markedly influenced by the spatial part of the transi-
tion matrix elements. Both spin effects are suppressed by
a sufficiently high magnetic field, when the spin-polarized
states become ground states [16].

The above spin blockades for correlated electrons, to-
gether with the well-known Coulomb blockade, are in

principle capable of explaining qualitatively all of the
presently observed features in linear and nonlinear trans-
port through quantum dots in semiconductor heterostruc-
tures.
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