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We analyze the finite temperature charge stiffness D(T ) 0), using a generalization of Kohn's
method, for the problem of a particle interacting with a fermionic bath in one dimension. We present
analytical evidence, using the Bethe ansatz method, that D(T ) 0) is finite in the integrable case where
the mass of the particle equals the mass of the fermions and numerical evidence that it vanishes in the
noniutegrable case of unequal masses. We conjecture that a finite D(T ) 0) is a generic property of
integrable systems.

PACS numbers: 71.27.+a, 05.45.+b, 72.10.—d

This work relates the finite temperature charge transport
to the response of energy levels to an infinitesimal fIux
and proposes a connection to the integrability of quantum
systems. Starting with the formulation by Kohn [1],
the charge stiffness (or Drude weight) representing the
weight of the delta function contribution DB(to) part in
the dynamical conductivity (tTt)ohas been investigated as
a criterion for a metallic, superconducting, or insulating
state [2,3]. The original approach [1] relates D to the
response of the ground state energy to a magnetic Aux and
thus requires only calculation of an equilibrium property,
bypassing a complete evaluation of the Kubo formula [4].

A similar concept also appears in the study of the
conductance of disordered metallic systems. Starting with
the work of Thouless [5] a close relation has also been
established between the conductance, the sensitivity on
boundary conditions (being equivalent to the introduction
of a Ilux), and the statistical properties of single particle-
energy spectra [6] of metallic systems.

Recently it has also been observed that the level
statistics in many-particle correlated systems is closely
related to the integrability of the system [7,8]. Still
the implications of this fact on transport quantities in
correlated fermion systems at finite temperatures T ) 0,
e.g. , a nonzero dc resistivity p(T) ) 0 or on the contrary
a possible finite charge stiffness D(T) ) 0, have not been
known so far.

In this work we analyze the relation between integrabil-
ity and transport in the generic problem of a single tagged
particle moving in a bath of fermions by a generalization
of Kohn's method at finite temperatures.

Kohn's method at T ~ 0.—We consider a general
tight-binding Hamiltonian of the form

H = t g(e'~d, +id; + —H.c.) + H;„, = T + H;„, (1)

representing a one —dimensional (1D) system of length L
with periodic boundary conditions pierced by a Ilux LP,
using the Peierls construction. T is the kinetic part and

H;„, is the interaction part of the Hamiltonian. From the

Kubo formula [2,9] we can relate the imaginary part of
the dynamical conductivity o."(co) to the charge stiffness
D,

1(n I j I m) I

'
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where j is the current operator, (T) is the thermal expecta-
tion value of the kinetic energy, and p„= e '-I /Z is the
Boltzmann weight for an eigenstate I n) of Hamiltonian
(1) with energy e„.

On the other hand [1], we can evaluate, using second
order perturbation theory, for P 0 a shift of the level

I n):

e(@)=(n IH(+=0)ln) —P(nl jln)
+, y I ( I j I ) I
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Extracting second order terms in @ (the curvature of
levels) we see that

(4)

In this demonstration we assumed that the levels
I n)

are nondegenerate, but the same procedure can be used
for degenerate levels after applying first order degenerate
perturbation theory to lift the level degeneracy. This
expression for D(T) generalizes Kohn's method to T ) 0
and reduces its evaluation to the calculation of curvature
of levels under an external flux. Easier than the complete
evaluation of Kubo formula, it can be performed either
numerically on finite size systems followed by finite
size scaling or in some cases (e.g. , integrable systems)
analytically [10]. It also provides a basis for analyzing
the conditions for the occurrence of ideal conductance.

The ground state of the metal should be characterized
by Dii = D(T = 0) ) 0 [1—3], where D&& is a measure
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(in the total partition function Z~ we add the contribution
from both the regular and bound states):

1 . 828t BA)
D(A, k) = —2 sink

2 cjA2 (8
DO c)2A

+
r)A a/~

By successive differentiation of Eq. (16) we can deter-
mine BA/BP = 1/g(A) and 8 A/BP .

Evaluating the expressions (18)—(21) we obtain the
results presented in Figs. 2 and 3 in very good agreement
with the numerical results, providing support for our
approach [15]. We also verified that the agreement
remains (within a couple of percent) for other values of
the interaction (e.g. , U/t = 8).

Comments —From. our formulation of D at finite tern

peratures as a thermal average over level curvatures,
we can try to understand the difference in behavior be-
tween integrable and nonintegrable systems as an effect
of many-body level fluctuations. In nonintegrable cases
the level repulsion prevents level crossings, i.e., crossings
are statistically negligible for macroscopic systems. Then
each level e„(@)fluctuates on the scale b, e ~ 1/2V (E),
where 3V(E) is the many-body density of states. There-
fore, the curvature D„averaged over P or over differ-
ent k vectors in the thermodynamic limit should vanish.
On the other hand, in integrable systems levels in general
cross, so fluctuations of e„(P) do not necessarily vanish
for L ~. Hence there is no restriction on the average
D(T), except that D ~ 0. The difference between both
cases is intimately related to level statistics.

This connection between integrability and finite temper-
ature charge transport born out of this model calculation,
we can conjecture to hold true for other quantum (as well
as classical) integrable systems. We can trace it to the
existence of a macroscopic number of conservation laws.
It is plausible that with respect to transport one should
distinguish two types of models within the class of 1D
correlated systems where some solvable models [16] are
available:

(a) In few (mostly solvable) 1D models the current is
a conserved quantity. This is generically the case for
models without umklapp scattering, e.g. , the Luttinger
model, 1D Bose gas, etc. , but also for the U = oo Hubbard
model [17]. In these cases one expects at T ) 0 ideal
conductance of the system characterized by p(T) = 0 or
D(T) ~ 0.

(b) Nontrivial answers are expected for models with
umklapp scattering, e.g. , for the 1D Hubbard model, the
t-V model, etc. If our conjecture is correct we expect

integrable models as the Hubbard, t-V, or supersymmetric
t J(-J = 2t) models to behave as ideal conductors at
finite temperatures. We can then argue that even 1D
nonintegrable models as the U-V model (with longer
range interactions), as they are characterized by the
integrable Luttinger liquid Hamiltonian at low energies,
should behave as nearly ideal conductors at low T; the
6 peak then would broaden to a narrow Drude peak of
weight D(T) [18].

We should stress that our study is based on the Kubo
linear response theory [4] whose applicability in the
context of Luttinger liquids has recently been debated
[19]. Further work is necessary on other (one- and
eventually higher-dimensional) integrable systems to lend
further support for these ideas.
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