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One-Particle and Two-Particle Instability of Coupled Luttinger Liquids
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It is shown that the Luttinger liquid is unstable to arbitrarily small transverse hopping. The crossover
temperatures below which either transverse coherent band motion or long-range order start to develop
can be finite even when spin and charge velocities differ. Explicit scaling relations for the one-particle
and two-particle crossover temperatures are derived in terms of transverse hopping, spin and charge
velocities, and anomalous exponents. The special case of infinite-range transverse hopping is treated
exactly and yields a Fermi liquid down to T = 0, unless the anomalous exponent 0 ~ 1.
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The one-dimensional electron gas with short-range in-
teractions provides the best understood example of inter-
acting electrons whose asymptotic low-energy behavior is
not described by a Fermi liquid (FL) fixed point. Instead,
the stable fixed point is the "Luttinger liquid" (LL). From
the time of their discovery, high-temperature supercon-
ductors have lead to questioning the stability of the FL
fixed point in two dimensions. In particular, Anderson
[1] has put forward the idea that a Luttinger liquid could
survive in two dimensions. It became clear that Luttinger
liquids weakly coupled by interchain single-particle hop-
ping t& would be a natural model to give a sound basis to
this conjecture. In fact, the question of the stability of the
Luttinger liquid in the presence of t& has been addressed
long ago in the context of quasi-one-dimensional conduc-
tors [2—4]. It was then shown that t+, as well as pair-
hopping correlations, destabilize the Luttinger liquid fixed
point. A series of recent works on two coupled chains
[5] and on the many-chain problem [6] confirm this view
but, nevertheless, the issue remains controversial [7]. In
particular, going beyond the two chain case is a necessary
requirement for phase transitions or long-range quasipar-
ticle coherence to occur. The very few attempts to do
so essentially deal with the situation where the spin and
charge velocities are equal [3,4].

In this Letter we demonstrate the instability of the
LL due to interchain coherence for an infinite number
of coupled chains. We start from a new functional
integral formulation where t& is the perturbation and
the unperturbed system is the LL with both anomalous
exponents and differing spin and charge velocities. We
investigate single-particle spectral weight as well as
induced two-particle correlations. For a given bare t&
and temperatures much lower than the Fermi energy T &&

F~, the typical phase diagram found here is sketched in
Fig. 1 as a function of temperature and of the anomalous
exponent 0, which is a measure of the interaction strength.
As temperature is lowered, two types of crossovers can
occur. For weak enough interaction, transverse one-
particle coherent motion starts to develop, indicating that

the crossover at the deconfinement temperature T l is
from LL to FL. On the other hand, for strong interaction,
virtual pair hopping becomes the dominating process
which eventually leads to long-range ordering below the
two-particle dimensional crossover temperature T 2, even
if there is confinement at the one-particle level (T,z )
T,i). At temperatures such that 0 ~ T ( T ~(T,~), a true
phase transition can occur in more than two dimensions.

Let us start with the full partition function for a set
of N& fully interacting chains written in the interaction
representation

—p(g M"+g A'„,)

where indices i,j run over all N& chains, A, is the
purely 1D Hamiltonian describing the interacting elec-
trons along chain i, while the interchain hopping part
Ai„stands as the perturbation. The above thermody-
namic average ( . )tD and partition function Z&D only
involve the pure 10 Hamiltonian. The hopping Hamil-
tonian is given by 9f&;, = —f dx g„ t&;,a~; (x)a„,(x),

()A

FIG. l. One-particle (T,i) and two-particle (T 2) crossover
temperatures shown qualitatively as a function of 0 in the
gapless case. The solid line becoming dotted indicates the one-
particle deconfinement LL ~ FL for the exact infinite-range
transverse hopping model. Point A gives the noninteracting
value of T, i (—t~/vr), when u~ = v = vF.
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where x is the continuous coordinate along the chains
while p = ~ denote right- and left-going electrons, re-
spectively. By analogy with the problem of propaga-
tion of correlations in critical phenomena, the propa-
gation of one-particle transverse coherence is studied
through an effective field theory which is generated by a
Hubbard-Stratonovich transformation for Grassmann vari-
ables. This allows the partition function Z to be expressed
as a functional integral over a Grassmann P~*) field:

Z ZJD /z) 8~ —fd(&)y . 0; (&)~i JAJ(~)

fd(1)g [a; (l)p;())+tp;*(l)a;())]e
1D

with the notations f d(n)P, (n) =—fdz„g„ /t„I";(z„)
and f dz„—= f dx„ fo dr„. The logarithm of the ther-
modynamic average in (2) is readily recognized as the
generating function for the exact 1D connected Green's
functions G~"). Changing variables from P; to g, t~;, ill,

in the functional integral (2) allows us to ultimately write
for the effective field theory

Z Z]D Z) P*Z) P e 5'I 0",0]

d(1) d(2) P P„(1)
kq

&& I. &
—ti(ki)G"'(I —2)]A, (2), (4)

where G ' is the exact one-dimensional propagator. The
interacting part is found to be

where the Grassmannian Landau-Ginzburg-Wilson func-
tional, + = +o + P„z+", involves a quadratic part
and a sum of effective interactions to all orders in the

P field. To write a specific form for +, let us consider
the case where chains are lined up in a plane and let us
Fourier transform in the direction transverse to the chains.
Then, the Gaussian part describing the free propagation of
the P field takes the form

d(1) d(2n)P&„(1) ilail, „„(2n)y~ (k~~, . . . , k~2„) G," (1, . . . , 2n),

where

y~ (k~), . . . , k~2„) =
2n

- &j2

ti(ki ) ~z.a,.o, (6)

(7)

where cu„= (2n + 1)AT, while k = (k, k&), with k mea-
sured with respect to the right 1D Fermi point kF. In order
to show the existence of a quasiparticle pole at T = 0, we
use the known general form for the asymptotic 1D prop-
agator G ' describing the Luttinger liquid in space and
imaginary time [9],

0
tkFX

S( )
' " S( ) " (8)

2mi A~,
where S(z„) = g„sinh (z„/g, ) and z, = x + iv, r. Here,
v~ and v are the velocities of spin and charge exci-

in which t&(k&) is the Fourier transform of t~;, . The
Gaussian part gives the exact result: (a) In the noninteract-
ing limit (G~"—2) ~ 0) for arbitrary t&. (b) For arbitrary
interaction when ti = 0. (c) In the limit of infinite-range
transverse hopping, whatever the value of t& and of the
interaction. Therefore I/W& may be used as a formal ex-
pansion parameter [8].

Quasiparticle pole at T = 0.—An instability of the LL
at zero temperature and thus the possibility of a FL fixed
point is already present in the free theory of the P field
described by +0. At this level of approximation, the 2D
one-particle Green's function in Fourier-Matsubara space,
say for right-going electrons, is given by

G"'(k, tu„)
1 —ti (ki) G~')(k, cu„)

'

where A' = —~ 'ImG('~ is the exact one-dimensional
spectral weight, Z(t~) is the quasiparticle residue, and
e(k) the pole of (7). For the case at hand, the un-

damped quasiparticle spectrum given by the pole of (7)
is e (k) = kv —sgn{t~(ki)) (kbv) + ti (k~), where
v = (v~ + v )/2 and b. v = (v~ —v )/2, while the
quasiparticle residue takes the form

iti(ki) I

(kAv)' + t~(k~)
(10)

tations, respectively, while g~ = vp /AT are the cor-
responding thermal coherence lengths. The exponents
0~ ~ 0 and 0 ~ 0 are the spin and charge contribu-
tions to the anomalous dimension 0 = 0~ + 0 of the 1D
Green's function and A is an ultraviolet cutoff. Now, one
of the central issues is to shed light on the inhuence of
differing spin and charge velocities [1] on the stability
of the LL. For this sake, let us consider (8) in a special
case where things get simpler, that is, when 0~ = 0 = 0
but still v~ 4 v . In this case, the T = 0 retarded 1D
propagator, G~')(k, tv), has two square root singularities.
At the Gaussian level, the corresponding spectral weight
A2o = vr 'Im@2D obtain—ed from the imaginary part of
(7) is given by

W' (k )= A'D(k, tv)

I + [~t, (k, )W»(k, ~)]2

+ Z(ti)6((tv —e(k)),
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The residue is readily seen to satisfy Z 0 when
t& ~ 0 while Z 1 when Av 0 as one expects for
free electrons. Note that the infinite lifetime of the
quasiparticles in (9) should become finite when one goes
beyond the Gaussian approximation thus allowing the
P's to interact [8], except at the Fermi surface where
the lifetime should remain infinite because of the usual
phase space arguments. One can also check that for
wave vectors close to the new Fermi surface, given by
(v~v )'~ k = t~(ki), the single-particle spectral weight
has the following frequency dependence. For nearest-
neighbor hopping and k+ ( qr/2, a quasiparticle peak is
first encountered as the frequency is increased, followed
by an incoherent background which is a smoothed version
of the original LL. In other words, remnants of spin-
charge separation are left at high energies.

One-particle dimensional crossover. In the more
general case 0 4 0, Z(t&) cannot be found analytically
although we can prove from known ID spectral weights
[10] that a pole appears in regions where the 1D spectral
weight is zero, leading to results qualitatively similar to
those just discussed. Nevertheless, we can determine the
temperature scale T, i at which the pole in g2 becomes
perceptible and transverse single-fermion coherence
starts to develop. Using the natural change of variables
q' = vrT7 and x = (g~g )'~2x' to evaluate the Fourier
transform of the 1D Green's function (8) at the Fermi
level G[')(0, 7rT), and substituting in the 2D Gaussian
propagator (7) one readily finds

0) ( ) 0&/(I 0)

T 1
—EF

k ~)

FiI VO- VP

where Fi (x) is a temperature independent function that
satisfies Fi (x) = F) (1/x) and which also depends on
0~ . As long as 8 ( 1, or equivalently if G[')(x) de-
cays more slowly than x, the coupling t& is relevant
and T, l is finite, although smaller than the noninteracting
value T, ~

—t~/qr [2,4,6]. The condition 0 ( 1 is satis-
fied for the Hubbard model with a non-half-filled band
where one has the exact result 0 ~ 1/8 [11]. For more
specialized 1D models (forward scattering only, half fill-

ing, etc.) one can have 0 = 1 and 0 ) 1, where trans-

verse hopping becomes marginal and irrelevant, respec-
tively. In these cases, transverse band motion does not
develop and the electrons remain spatially confined along
the chains at all temperatures. As seen from (11), the
effect of Av 4 0 is to decrease the deconfinement tem-
perature but not to make it vanish. The vanishing of T 1

is expected for sufficiently strong coupling, since spin
and charge degrees of freedom must recombine for an
electron to tunnel on a neighboring chain. Indeed, it can
be shown that F~((v /v~)'~"-) ~ p (v /v~)'~2 and cor-

1

respondingly, T, ~
~ 0 when 0 ( ~(1 —0~).

Two-particle dimensional crossover. —We now pro-
ceed beyond the Gaussian level by taking into account
the 6(t„) quartic term in the functional (5) which de-
scribes correlated transverse pair tunneling [8]. We argue
that the system will undergo a two-particle dimensional
crossover towards charge density wave (CDW), or spin
density wave (SDW) ordered states if the interaction is re-
pulsive and singlet or triplet superconducting states if it is
attractive. Focusing on the 2k' particle-hole channel, we
rewrite the partition function at the quartic level

fthm
o)(, , lv",,(„~,)a, H, &)o„„(„,„))Z = Z&D

with the obvious notation (z) = iz~, z2, z3, z4) and where
( . .

)& ~ is the average with respect to go. The composite
fields

O, (z3, z)) = 1Vi
—1/2

~, (z3)~~ p+,k, +„(zi )
n+ nP

ki nP

describe CDW (p, = 0) and SDW (p, = 1, 2, 3) corre-
lations. For nearest-neighbor hopping, we approximate
the transverse pair tunneling amplitude as y~ (q~) =
(2t&) cos(q&), where q& is the transverse momentum of
the particle-hole pair, by setting the incoming momenta
to 0 or 7T, since this leads to the highest value for T,2. In
the above, o-o = 6 ~, a.~=~ ~3 are the Pauli matrices and
the q& independent function R~((z]) is the ID connected
correlator for charge or spin fluctuations.

To examine the possibility of phase transition, we
perform a Hubbard-Stratonovich transformation on the
0„ fields. Let g„* (z3, z&) be the complex field conjugate
to O„q„(z3,z~). The partition function Z then takes the
form

Z Z]D
f[dz) P g* [z3,z~)[i —

y~ [qi )R~((z)) g„„~(z2,zq)+ 6 [&")
(12)

Softening of the g field first occurs for a value of q& = qr corresponding to the usual staggered order. The temperature
T,~ at which the g field softens must be greater than T, ~ to retain its meaning as a two-particle crossover temperature.
For definiteness, let us now consider the gapless case. As shown below, T 2 scales differently in the weak- and strong-
coupling limits. In the strong-coupling limit [8], the correlator R~(z& —z3, zz —z4, z&

—z2) decays faster than the
square of the electron-hole separations ~z&

—
z3~ and ~z2

—z4~, so that the scaling is determined by z = z~
—z2 only,
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leading to the asymptotic form

R~(z) ——A~~ cos2kFx
P=P, o

with y„= 2 —y~ ~
—y„. The strong-coupling regime is defined by 2 —20 —y„( 0 [3,4], where y~ is the critical

exponent which governs the temperature behavior of the 1D susceptibility g'D(T) —T r~. In this regime,

(13)

where the dimensionless function F2 (x) vanishes at x = 0
and EF —AvF.

In the weak-coupling regime [8], 2 —20 —y„) 0,
the correlator essentially scales as the square of the one-
particle propagator (8) so that

!
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Tx'F3 ((vcr/vp) (g1) ~ (14)

where [g) stands for the set of dimensionless electron-
electron interaction vertices and F3 (x, y) vanishes when
either of its arguments vanishes. It is only for sufficiently
weak coupling that T 2 ~ T 1 and that deconfinement
takes place. In both regimes, the effect of vp 4 v is to
decrease T,2 . Finally, (13) and (14) reduce to the known
results [4] when v~ = v . This is also compatible with
the discussion in [6].

Higher-order vertices, 6 (t3~), . . ., involve higher-order
connected functions G, , . . . of the Luttinger liquid. Since
these functions do not contain any new relevant exponent,
they do not change the above scaling results for either
T l or T 2. In the latter case, higher-order connected
functions modify mode-mode coupling terms included in
the functional (12).

Infinite range transverse hopping: An exact result. —
The case where the transverse hopping amplitude has
an infinite range can be solved exactly [12]. For the
energy to be independent of the number of perpendicular
chains N& in the thermodynamic limit N& ~ o, the
transverse hopping matrix must be scaled as t&;, =
t~/N~. This implies that in Fourier space, t~(ki) =
ti Bk, o, so the n-body interaction is such that g "—

ti (t~/N+)" . Consequently, in the limit N+ ~ ~, all
effective interactions vanish as t~/N~ ' ~ 0. Hence, the
Gaussian propagator (7) becomes exact. There can be no
interchain pair tunneling and consequent long-range order.
Either 0 ~ 1 and the electrons remain spatially confined
along the chains at all temperatures or 0 ( 1 and the
single-particle propagator acquires a pole for wave vectors
along the chain (k, 0) at all temperatures below T, i.
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