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Calculating Accurate Free Energies of Solids Directly from Simulations
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We have developed and tested a new, accurate technique for determining free energies of solid phases
using simulations. Our method uses correlation functions available in the simulations, and yields an
upper bound on the entropy. We use our approach to calculate the free energy of a simple model of
structural phase transitions, and compare with exact calculations of the free energy for the same model.

PACS numbers: 63.70.+h, 64.10.+h, 64.70.Kb, 65.50.+m

Much current theoretical work in condensed matter
physics and computational materials science requires the
determination of a model material's structure and other
properties at a given pressure and temperature. An
accurate and general method of determining the free
energy of a material would greatly aid work in solid-solid
transformations, alloy design, surface reconstructions, and
many other areas. Any calculation of a phase diagram
(away from T = 0} requires knowledge of the relevant
free energies.

The difficulty is that, typically, there are many possible
structures for a given material or defect; the observed
structure will depend upon its energy and, for T ) 0, its
entropy. The energy can often be determined, either by
first-principles calculations or by more empirical models.
The entropy cannot be calculated directly, however, as
it cannot be written in terms of an ensemble average.
Therefore, either some indirect approach must be used or
a physical approximation must be made.

One approach is to use a series of simulations to
calculate a difference in free energies. If we have a model
potential Vo for which we know the free energy Fo at
some temperature, and wish to know the free energy F of
a different potential V at the same potential, then we may,
in principle, calculate the free energy using the relation

1

model of structural phase transitions. Anharmonic terms
are included in the quantities calculated during the simu-
lation, affecting both the energy and the entropy. These
properties make our approach quite useful.

We begin by considering a system with a single degree
of freedom x. We assume that the particle is in some
external potential V(x) that has a local minimum which
confines the particle to some region of phase space.
Classically, the partition function is

dx exp[ —P V(x)] = exp[ —P F] . (2)

F ~ Fp + (V —Vp)p, (3)

where the average is with respect to a trial potential Vp(x)
with a known free energy Fo. We will reverse the roles
of the trial and actual potentials, to write this principle as

Here, the thermal de Broglie wavelength is A = h/
(2vrmT)'I and P = 1/T (Note tha.t we have used ktt =
1 for convenience. )

To calculate an approximate free energy, we use
the Gibbs-Bogoliubov inequality [7] that is used in
many approaches, including self-consistent phonon theory
(SCPT) [8]. This variational principle is normally written
as

d A(V —Vp)p .
Fo —F + (Vo —V). (4)

This approach is straightforward, assuming that there
are no irreversible processes (such as phase transitions)
occurring as the system is perturbed in the path from A =
0 to A = 1. The difficulty in this approach is that multiple
simulations with different values of A are required in order
to evaluate the integral in Eq. (1). For solids, the free
energy is usually found by perturbing from an Einstein
solid or some other harmonic solid [1—6]. Once F(T) is
known for one temperature, it may be determined at other
temperatures using a relation similar to Eq. (1).

In this Letter, we (1) present an approach which al-
lows us to calculate an approximate free energy from a
single simulation; (2) prove that this provides an upper
bound to the entropy; and (3) demonstrate the power of
this technique by comparing it with an exactly solvable

All expectation values are calculated using the actual
potential V(x). We may write this equation as

S ~ 50, (5)

where S =——P[F —(V(x)) —(Ez)] is the real entropy of
the system, and Sp = P[Fp —(Vp(x)) —(Etr—)] is a trial
entropy of the system. Here, the average kinetic energy
will classically have the value (Et, ) = T/2

We now consider the specific case of a harmonic trial
1

potential Vp(x) = zmto x . (For convenience, we choose
the origin of x such that (x) = 0.) For this case, the trial
entropy is

1 1 27r T mto 2(x2)
~o = —+ —ln +

yg ~~$2 PT
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Minimizing Sp with respect to cu, we obtain

T'=
-&-) (7)

which is exactly what we would expect for a har-
monic system. Equation (7) then simply states that for
a classical harmonic oscillator, (x~) grows linearly with
temperature.

Applying this to an anharmonic system, however,
results in an effective frequency that is temperature
dependent. In the general case, (x~) is not proportional
to the temperature. Defining the frequency by Eq. (7)
provides for the best possible harmonic approximation of
the system. This is analogous to the approach of SCPT,
in which temperature-dependent phonons are calculated
using Eq. (3). SCPT produces an upper bound to the free
energy. Our approach produces a lower bound, making
the techniques complementary.

Inserting Eq. (7) into Eq. (6) to eliminate the frequen-
cies, we obtain the following upper bound to the entropy:

1 2vr(x2)S~Sp, Sp= —ln +1.
2

perature effects, allowing for temperature-dependent fre-
quencies. At any given temperature, the instantaneous
correlation matrix may be determined from a simulation.
The entropy of the system is then estimated from a har-
monic system which, at that temperature, exactly. repro-
duces the correlation matrix. Anharmonic terms will be
accounted for by affecting the correlations, which will
then affect the entropy calculation. Thus, this is very
comparable to SCPT, yet the method of calculation al-
lows for significantly broader applications.

The similarity of this approach to SCPT and quasihar-
monic theory has been used previously by Sutton [9,10].
The work of Sutton used quasiharmonic theory to de-
rive a free energy which, in the classical limit, gives
the entropy in the form shown in Eq. (11). His moti-
vation was to use this as an analytic approach to cal-
culating temperature-dependent relaxations near defects.
Our derivation demonstrates that this bounds the entropy
and indicates how it may be used in combination with
simulations.

We note that, in practice, this bound may not be a good
approximation for the true free energy. If the system is
not approximately harmonic, then the results will be poor.
In particular, diffusion will cause this approach to produce
entropies much higher than the real entropy of the system.
Further, the bound is based upon accurate values of the
equilibrium correlation function. If the system is not in
equilibrium, then the calculated entropy may be lower
than the actual value. This may occur when simulating
metastable phases.

To demonstrate how our approach may be applied, and
to test the accuracy of the approximation, we have used a
simple model of first-order structural transitions [11—14]
which may be solved exactly in 1D using transfer matrix
methods [12,13]. By comparing our approach with exact
calculations that are not based upon simulations, we may
demonstrate the accuracy and usefulness of the approach.

In our model, the state of each particle is characterized
by a scalar displacement u. We have chosen a Hamil-
tonian that is invariant under u —u, with two absolute
minima at u = ~up, but also has a metastable minima
at u = 0. The model is based upon a phenomenological
expansion of the energy at T = 0 (with all parameters in-
dependent of T) In 1D, the energy ma. y be written as

k
U = P V„(u;) + —(u; —u;+~)

I

This equation is straightforward to evaluate from a
simulation, which would give a time-averaged value for
the potential energy, for the temperature, and for (x ).

We now generalize to a system with N degrees of free-
dom x, , j = 1, . . . , X. We define the correlation matrix

C;, = (x,x, ) —(x;)(x,).
As C,, is symmetric and real, we are free to change
our coordinate system to a set of variables y, which
diagonalizes the correlation matrix. This corresponds
to choosing a set of modes for the system that are
approximately decoupled. Further, we may choose the
coordinates such that (y, ) = 0.

We may then choose a trial potential that is harmonic
in this basis. Repeating the analysis as before, we find a
set of frequencies specified by

+ —(u, + u,.+, ) (u; —u, +i) (13)S —So, Sp=
where the on-site energy, shown in Fig. 1, is given by

V„(u) = (Vou + E„,ii/uo) (u —uo) —E„,ii. (14)
This potential can be characterized by setting the depth of
the minima E„,~], the value of up, and the barrier height to
well depth ratio Fb,„;„/F.„,n. For the purposes of this pa-
per, we will set uo = 1, E„,~~

= 75, and Fb,„;«/F~, u = 4,
following Ref. [12].

NT T 2mF ~ (V) — ——ln det C
2 2 A2

(12)

This is a powerful approach: While based on the har-
monic approximation, it directly incorporates finite tem-

CO

T
(10)

m(y,') '

where (y, ) are simply the eigenvalues of the correlation
matrix. From Eq. (9) it is apparent that all eigenvalues
will be positive. The product of the eigenvalues is
simply the determinant of the correlation matrix, so the
generalization of Eq. (8) is

N 2m 1

2 A2 2
ln( ) + —ln(detC) + N (11).

The corresponding free energy bound may then be ex-
pressed quite simply as
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method models of Al [5] and Cu [6]; this will be described
in a forthcoming paper.
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FIG. 3. Free energy as a function of temperature. The solid
line indicates exact results, obtained from transfer-integral
calculations. The open symbols are results from simulations
of heating the low-temperature phase; the closed symbols are
results from simulations of cooling the high-temperature phase.

The high-temperature simulation results are in particu-
larly good agreement with the exact results for T ~ 140,
while the low-temperature results are not as good. The
errors are on the same order of magnitude as errors from
SCPT [12,14]. The larger error for the low-temperature
phase is due to the fact that the expansion of the potential
about u = uo has odd-power terms, which are not fully
taken into account in first-order perturbation schemes such
as our technique. A fuller account of how this occurs in
SCPT, and how higher order terms may be incorporated,
is given in Ref. [14]. Similar difficulties have been no-
ticed in defect free energy calculations [6).

In conclusion, our paper has demonstrated that the use
of Eq. (11) is a good approximation for the exact results,
for solids which may be approximated by an effectively
harmonic Hamiltonian. This approach is more convenient
than SCPT and does not require a series of simulations.
Further, it provides for temperature-dependent phonon
frequencies, which makes it more adaptable than other
approximate harmonic techniques [18]. We have also
successfully applied this approach to embedded atom
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