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Instantaneous Normal Modes and the Glass Transition
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The "instantaneous" normal mode (INM) spectrum for a model soft-sphere system is calculated
via molecular-dynamics computer simulation for a variety of temperatures both above and below the
observed glass transition temperature. In such spectra, the modes can be classified as either real
or imaginary frequency. Results indicate that the liquid glass transition is associated with the
temperature below which all "unstable" INM's become localized and that the crossover from unstable
to stable INM's occurs at a finite imaginary frequency and not at zero as is generally assumed. Two
possible mechanisms for the glass transition are discussed that are consistent with the present data.

PACS numbers: 61.43.Fs, 61.20.Lc, 63.20.Pw, 64.70.Pf

The glass phase is the most poorly understood of the
fundamental phases of matter. Unlike freezing, the transi-
tion from a liquid to a glass is not a well-defined thermo-
dynamic transition, since the glass transition temperature
Tg depends upon the nature of the cooling process, imply-
ing a primarily kinetic mechanism. However, whether this
transition is driven (or accompanied) by some underlying
thermodynamic transition is at present an open question.
In addition, at very low T, glasses and amorphous solids
[1] in general exhibit thermodynamic and transport behav-
ior that is both quantitatively and qualitatively different
than crystals, indicating far richer microscopic dynamics.

The anomalous thermodynamic behavior of glasses at
low T can be explained by assuming that the dominant
low-frequency contributions to the vibrational density of
states are localized excitations. Such localization is a con-
sequence of the structural disorder of the system. Be-
low about 1 K the dominant excitations are postulated to
be localized two-level tunneling states [2,3]. This model
successfully reproduces the observed unusual thermody-
namic properties of amorphous systems at very low tem-
peratures, including the linear temperature dependence of
the heat capacity, which is a universal property of amor-
phous systems below about 1 K [4].

At higher temperatures (between 1 and 20 K), this two-
level state (TLS) model breaks down, failing to explain
the observed plateau region of the thermal conductivity
[4,5] in amorphous systems at about 10 K as well as pro-
nounced nonlinearities in the heat capacity above 1 K
[4]. Experiments [6,7] and computer simulations [8,9]
show that, in this region, low-frequency localized har-
monic modes become important. There is some indication
that these modes and the TLS have a common structural
origin [10,11]. Recent experiments also show a corre-
lation between the nature of the glass transition and the
relative concentration of TLS and the localized harmonic
modes [12,13].

The purpose of this present work is to study the role of
disorder-induced localized excitations in the glass transi-
tion. To do this, we make use of the concept of "instan-
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respectively. Diagonalization of the force-constant matrix
K yields the instantaneous normal modes (eigenvectors)
and corresponding squared normal-mode frequencies co

(eigenvalues). Since at T 4 0 an arbitrary configuration
will not be at the potential minimum, the linear term F
will not be zero and the matrix K will not be necessarily
positive definite, but will have negative eigenvalues yield-
ing imaginary frequencies. We can therefore classify the
instantaneous normal modes as stable (real frequencies)
or "unstable" (imaginary frequencies). Averaging over
many configurations at a given temperature and density,
we obtain the normalized INM density of states
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taneous" normal modes (INM) [14—16]—an extension to
the liquid and glassy state of the harmonic normal-mode
technique that has been so valuable in understanding the
solid state. By analyzing the localization of these instan-
taneous normal modes in a simulation of a model system
both above and below the glass transition temperature, an
interesting picture emerges.

Instantaneous normal modes are defined in analogy to
the standard normal modes. For a system consisting of W

identical spherically symmetric particles at temperature T
and volume V, we expand the total potential 4 about an
3N-dimensional configuration Rp (chosen arbitrarily from
the trajectory), yielding

4 (R) =4 (Rp) F ' (R —Rp)

1+ —(R —Rp) K (R —Rp) +
2

where the force vector and dynamical matrix are given by

'"-= a~ (2)
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using 10 and 7 configurations for the averaging, respec-
tively. The principal features of this plot are the nonex-
istence of double wells above i v = —0.15(mo. /e)'i and
the fact that the two curves are identical between —0.15
and —0.30(mo. /e)'i2. (Such a cutoff has recently been
postulated for unstable INM's in liquids [28].) Therefore,
the boundary between unstable and stable INM's is about
—0.15(mcr2/e)'i2 not at 0 as traditionally assumed and is
independent of temperature, at least in the vicinity of the
glass transition. We see that at T* = 0.08, which is slightly
below the observed glass transition, the boundary between
stable and "unstable" INM's is within error nearly coin-
cident with the boundary between localized and extended
modes. For T* = 0.12, the stable and unstable boundary is
still within the region of extended modes (at least as mea-
sured for T" = 0.08). This gives weight to the hypothesis
that the glass transition is associated with the temperature
below which all unstable modes become localized.

With the error of the data presented here it is only pos-
sible to say that the "unstable" modes become completely
localized below some temperature near Tog —which tran-
sition occurs first is unclear. One possibility is that the
two temperatures coincide and the limiting glass transi-
tion temperature is identified with the disappearance of
extended unstable INM's —precisely those modes gener-
ally expected to lead to diffusive behavior. Another pos-
sible mechanism that is consistent with this data has been
proposed [29,30] involving a dynamical transition occur-
ring at a temperature above the glass transition. This
transition represents a change in the primary diffusion
mechanism in supercooled liquids from continuous How

to localized hopping steps. A connection of the hopping
diffusion process to unstable INM's has been previously
speculated [31] and evidence that such a transition may
exist has been found in computer simulations on trun-
cated Lennard-Jones atoms [30] and Lennard-Jones mix-
tures [32]. Such a mechanism has also been incorporated
in mode-coupling theories of the glass transition [33].

This investigation has shown that, for a model sys-
tem of monatomic soft-sphere particles, the glass transi-
tion appears to be associated with the temperature below
which all unstable INM's become localized. The bound-
ary between stable and unstable INM's is found to be at
a nonzero value of i v, contrary to what is usually pos-
tulated and confirming recent speculation [28]. There is
much more to be done. Are such instabilities related to
"defects" in the glass, as has been shown to be the case
for low-frequency harmonic vibrations in this same sys-
tem [9]? A more accurate determination of the tempera-
ture at which extended unstable modes begin to appear is
needed in order to determine which of these two (if either)
proposed mechanisms is correct for this system. Further
work to address these and other questions for a variety of
systems is currently underway.
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