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The “instantaneous” normal mode (INM) spectrum for a model soft-sphere system is calculated
via molecular-dynamics computer simulation for a variety of temperatures both above and below the

observed glass transition temperature.

In such spectra, the modes can be classified as either real

or imaginary frequency. Results indicate that the liquid — glass transition is associated with the
temperature below which all “unstable” INM’s become localized and that the crossover from unstable
to stable INM’s occurs at a finite imaginary frequency and not at zero as is generally assumed. Two
possible mechanisms for the glass transition are discussed that are consistent with the present data.

PACS numbers: 61.43.Fs, 61.20.Lc, 63.20.Pw, 64.70.Pf

The glass phase is the most poorly understood of the
fundamental phases of matter. Unlike freezing, the transi-
tion from a liquid to a glass is not a well-defined thermo-
dynamic transition, since the glass transition temperature
T, depends upon the nature of the cooling process, imply-
ing a primarily kinetic mechanism. However, whether this
transition is driven (or accompanied) by some underlying
thermodynamic transition is at present an open question.
In addition, at very low T, glasses and amorphous solids
[1] in general exhibit thermodynamic and transport behav-
ior that is both quantitatively and qualitatively different
than crystals, indicating far richer microscopic dynamics.

The anomalous thermodynamic behavior of glasses at
low T can be explained by assuming that the dominant
low-frequency contributions to the vibrational density of
states are localized excitations. Such localization is a con-
sequence of the structural disorder of the system. Be-
low about 1 K the dominant excitations are postulated to
be localized two-level tunneling states [2,3]. This model
successfully reproduces the observed unusual thermody-
namic properties of amorphous systems at very low tem-
peratures, including the linear temperature dependence of
the heat capacity, which is a universal property of amor-
phous systems below about 1 K [4].

At higher temperatures (between 1 and 20 K), this two-
level state (TLS) model breaks down, failing to explain
the observed plateau region of the thermal conductivity
[4,5] in amorphous systems at about 10 K as well as pro-
nounced nonlinearities in the heat capacity above 1 K
[4]. Experiments [6,7] and computer simulations [8,9]
show that, in this region, low-frequency localized har-
monic modes become important. There is some indication
that these modes and the TLS have a common structural
origin [10,11]. Recent experiments also show a corre-
lation between the nature of the glass transition and the
relative concentration of TLS and the localized harmonic
modes [12,13].

The purpose of this present work is to study the role of
disorder-induced localized excitations in the glass transi-
tion. To do this, we make use of the concept of “instan-
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taneous” normal modes (INM) [14—16]—an extension to
the liquid and glassy state of the harmonic normal-mode
technique that has been so valuable in understanding the
solid state. By analyzing the localization of these instan-
taneous normal modes in a simulation of a model system
both above and below the glass transition temperature, an
interesting picture emerges.

Instantaneous normal modes are defined in analogy to
the standard normal modes. For a system consisting of N
identical spherically symmetric particles at temperature T
and volume V, we expand the total potential ® about an
3N-dimensional configuration Ry (chosen arbitrarily from
the trajectory), yielding

®R) =P(Rg) — F - (R — Rp)

1
+§(R —Ro)-K-(R—-Rp)+---, (1)
where the force vector and dynamical matrix are given by
dP(R)
F i = 5 2
(F) Riw leer, 2
and
*P(R)
Kliajp = 2p—ap— |
K)iois = S~ lan, 3)

respectively. Diagonalization of the force-constant matrix
K yields the instantaneous normal modes (eigenvectors)
and corresponding squared normal-mode frequencies w?
(eigenvalues). Since at T # 0 an arbitrary configuration
will not be at the potential minimum, the linear term F
will not be zero and the matrix K will not be necessarily
positive definite, but will have negative eigenvalues yield-
ing imaginary frequencies. We can therefore classify the
instantaneous normal modes as stable (real frequencies)
or “unstable” (imaginary frequencies). Averaging over
many configurations at a given temperature and density,
we obtain the normalized INM density of states
3N
D(w) = <§ > d(w - wi)> @

i=]

of the motion.
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The INM spectrum gives a map of the average cur-
vature potential surface region visited by the dynamical
trajectories, and as such is a static equilibrium property of
the system. In studies on liquids and clusters, such spec-
tra have been shown to give a very good description of the
short-time dynamics [16—21]. One important quantity in
these studies is the fraction of unstable modes, f,, which
can be easily obtained from the density of states, and has
been found to be closely connected to the self-diffusion
constant [16,17,19,22].

The amount of localization can be quantified in terms
of the normalized eigenvectors e of each INM, where
J runs over all the particles in the sample and « labels
the modes. The fraction of the kinetic energy of mode
a located on a given atom j is then given by (e} -
e). A standard measure of localization of mode is the
participation ratio

-1
Pa = (N Des e;»*)z) : )
J

For extended modes p is of order unity. For localized
or quasilocalized modes, it will scale inversely with
the system size. Recently, the participation ratio has
been used in a study of localization of INM’s in liquid
water [23] in which all imaginary frequency modes were
reported to be delocalized.

For convenience and ease of comparison, the system
chosen here is the same as that used in earlier work by
Laird and Schober [8,9] on quenched (7 = 0) normal
modes, namely, one interacting via a modified inverse
sixth-power repulsive potential

v(r) = e(%)6 + A(%)2 + B 6)

From here on the following standard reduced units will
be used: r* =r/o,p* = po?, and T* = kT/e. The
potential was cut off at »J = 3.0, and the parameters A
and B were chosen so that both the potential and the force
vanished at r}. This form of the shifting potential was
chosen so that its effect near r* = 1.0 was small. In the
previous study, this potential form was selected because
it exhibited a larger concentration of soft localized modes
than other systems studied (e.g., Lennard-Jones), which
facilitated the statistical analysis.

At the density studied here, p* = 1.0, the thermody-
namic melting temperature of this system has been de-
termined to be 7,, = 0.19 [24] and the limiting glass
transition temperature, determined by the vanishing point
of a power-law fit to the diffusion constant, as T,, =~
0.085 [9]. The temperature Ty, is an inaccessible point
in the liquid state and is generally considered to be the
glass transition temperature in the limit of infinitely slow
cooling [25].

The liquid and glass configurations used here were
created using constant temperature molecular-dynamics
(MD) computer simulation on a system of 500 soft
spheres. For the simulations we used the velocity-Verlet
algorithm [26] with a time step of 0.02—in units of

(mo?/€e)'/?—and a density of p* = 1.0. For the liquid
systems above Ty,, the system was equilibrated at the
desired temperature and then configurations separated by
100 time steps were extracted for the INM analysis. An
average of 20—40 configurations were used to create the
results shown below. The glass configurations (below
To,) were created by first quenching a well-equilibrated
liquid (7" = 0.5) to the desired temperature, followed by
an equilibration run of about 1000 time steps. The glass
configurations were then extracted from the trajectory
in the same manner as for the liquid, except that after
every five configurations a new liquid starting point was
chosen. Care was taken to exclude configurations for
which crystallization had occurred. Also, the results were
found to be insensitive to quench rate, although slower
quench rates resulted in a greater tendency to crystallize.
Figure 1 shows the calculated average INM density
of states (DOS) as a function of frequency v = w/(27)
for a variety of temperatures in the liquid (7" > 0.19),
the supercooled liquid (0.085 < 7™ < 0.19), and the glass
(T* < 0.085) regimes. For convenience, we have fol-
lowed the convention of earlier INM studies and multi-
plied the imaginary frequencies by i so that they appear on
the negative real frequency axis. As seen in earlier INM
studies (and as expected), the number of unstable modes
and the average magnitude of the imaginary frequencies
decrease continuously with decreasing temperature. Ex-
cept for this general decrease, no sharp or discontinuous
change is apparent in the DOS as the glass transition tem-
perature is crossed. (The fraction of the imaginary fre-
quency modes, f,, as a function of 7 does show a change
in curvature as the experimental glass transition tempera-
ture is crossed, but the significance of this is unclear.) It
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FIG. 1. Average INM density of states as a function of
frequency for a variety of temperatures. For display purposes
the unstable (imaginary frequency) modes are shown as
negative frequencies.
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should be noted, and has been pointed out earlier [15],
that the bimodal appearance of the D (v) is entirely an
artifact of the Jacobian factor 2»? used in the conversion
of the actual eigenvalue density D (A = »2) to a density
of frequencies.

In previous work on liquids, f, has been found to be
closely correlated to the self-diffusion constant, a fact
that seems reasonable if one interprets the imaginary
frequency modes as representing motional “channels”
that lead to barrier crossing. It is obvious, however,
that not all such channels can lead to diffusion motion,
since f, is nonzero even well below the observed glass
transition temperature. There are two possible cases in
which an imaginary frequency mode would not contribute
to diffusion. First, the mode could simply represent the
presence of an inflection point at the side of an otherwise
single-well region of the potential surface and would not
represent an unstable mode at all. Second, the mode could
be localized and any barrier crossing would lead to simply
a local rearrangement and not overall diffusion.

To examine localization, the average INM participation
ratio as a function of frequency, p(v), is plotted in Fig. 2
for the same temperatures shown in Fig. 1. The individual
p(v) plots are typical of disorder-induced localization of
a single excitation band [27]; namely, extended states
[large p(v)] at the center of the band with strong
localization [small p(»)] in the band tails. Qualitatively
similar observations have been made for the Lennard-
Jones system using visual inspection of the eigenvectors
to determine the degree of localization [14]. From Fig. 2
we see that at 7* = 0.15 the value of p(0) begins to
drop rapidly with decreasing temperature, indicating that
as the system approaches the glass transition temperature,
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FIG. 2. The average participation ratio p(») as a function of
frequency for the various spectra shown in Fig. 1. Again, the
unstable (imaginary frequency) modes are shown as negative
frequencies.
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the imaginary frequency modes become more localized
in character. To make this result more quantitative, it
is necessary to determine the value of the participation
ratio that represents the dividing point between extended
and localized modes. This is done by examining the
size dependence of p(v)—truly localized modes will
scale as 1/N whereas extended modes should show
little, if any, dependence on size. In Fig. 3(a) is shown
p(v) for a temperature of T* = 0.08 (just below Ty,)
for systems of size N = 128, 500, 864, and 1024.
This plot indicates that the boundary between localized
and extended modes occurs somewhere between iy =
—0.2 and about —0.15(mo?/€)!/2, corresponding to p =~
0.35 — 0.38 for a 500 particle system. Also shown in
Fig. 3(a) is p(v; T* = 0.12) for N = 500. Assuming that
the value of p at the localization boundary is the same
for this temperature gives a localized/extended boundary
between about i = —0.25 and —0.30(mo2/€)"/?.

The results above indicate that even at T* = 0.08 (below
the glass transition temperature) there is a nonzero fraction
of extended imaginary frequency INM’s. The question
now is whether or not these modes can really be labeled as
unstable. To answer this requires a detailed examination
of the energy profile of each INM (labeled by «)

E.(A) = ®(Ro + Aey), )

where ® and Ry are as defined in Eq. (1), e, is the
eigenvector for mode «, and A is a charging parame-
ter. For both 7* = 0.08 and 0.12, this examination shows
that E,(A) for modes with the largest imaginary fre-
quency are double-well potentials, whereas those with
the smallest imaginary frequency are single wells. To
quantify this we plot in Fig. 3(b) the average dimensionless
barrier height, BAE for those modes with double-well po-
tentials as a function of frequency for 7* = 0.08 and 0.12,
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FIG. 3. (a) p(v;T* = 0.08) in the imaginary frequency regime

for N = 128 (diamonds), 500 (crosses), 864 (squares), and 1024
(X’s) (the latter two also include 20 error bars). Also shown
is p(v;T* = 0.12) for N = 500. (b) Average dimensionless
barrier height [8 = (kT)™'] for the double-well INM energy
profiles as a function of frequency for p(7* = 0.08) and 0.12.
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using 10 and 7 configurations for the averaging, respec-
tively. The principal features of this plot are the nonex-
istence of double wells above iv = —0.15(mo2/€)!/? and
the fact that the two curves are identical between —0.15
and -0.30(ma2/€)'/2. (Such a cutoff has recently been
postulated for unstable INM’s in liquids [28].) Therefore,
the boundary between unstable and stable INM’s is about
—0.15(mo?/€)"/? not at 0 as traditionally assumed and is
independent of temperature, at least in the vicinity of the
glass transition. We see thatat 7% = 0.08, which is slightly
below the observed glass transition, the boundary between
stable and “unstable” INM’s is within error nearly coin-
cident with the boundary between localized and extended
modes. For 7" = 0.12, the stable and unstable boundary is
still within the region of extended modes (at least as mea-
sured for 7% = 0.08). This gives weight to the hypothesis
that the glass transition is associated with the temperature
below which all unstable modes become localized.

With the error of the data presented here it is only pos-
sible to say that the “unstable” modes become completely
localized below some temperature near T, — which tran-
sition occurs first is unclear. One possibility is that the
two temperatures coincide and the limiting glass transi-
tion temperature is identified with the disappearance of
extended unstable INM’s—precisely those modes gener-
ally expected to lead to diffusive behavior. Another pos-
sible mechanism that is consistent with this data has been
proposed [29,30] involving a dynamical transition occur-
ring at a temperature above the glass transition. This
transition represents a change in the primary diffusion
mechanism in supercooled liquids from continuous flow
to localized hopping steps. A connection of the hopping
diffusion process to unstable INM’s has been previously
speculated [31] and evidence that such a transition may
exist has been found in computer simulations on trun-
cated Lennard-Jones atoms [30] and Lennard-Jones mix-
tures [32]. Such a mechanism has also been incorporated
in mode-coupling theories of the glass transition [33].

This investigation has shown that, for a model sys-
tem of monatomic soft-sphere particles, the glass transi-
tion appears to be associated with the temperature below
which all unstable INM’s become localized. The bound-
ary between stable and unstable INM’s is found to be at
a nonzero value of iv, contrary to what is usually pos-
tulated and confirming recent speculation [28]. There is
much more to be done. Are such instabilities related to
“defects” in the glass, as has been shown to be the case
for low-frequency harmonic vibrations in this same sys-
tem [9]? A more accurate determination of the tempera-
ture at which extended unstable modes begin to appear is
needed in order to determine which of these two (if either)
proposed mechanisms is correct for this system. Further
work to address these and other questions for a variety of
systems is currently underway.
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