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Driven Depinning in Anisotropic Media
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We show that the critical behavior of a driven interface, depinned from quenched random impurities,
depends on the isotropy of the medium. In anisotropic media the interface is pinned by a bounding
(conducting) surface characteristic of a model of mixed diodes and resistors. Different universality
classes describe depinning along a hard and a generic direction. The exponents in the latter (tilted)
case are highly anisotropic, and obtained exactly by a mapping to growing surfaces. Various scaling
relations are proposed in the former case which explain a number of recent numerical observations.
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The pinning of interfaces by impurities occurs in many
circumstances such as in random magnets or quid flow
through porous media. There has been considerable
recent progress in understanding such collective depinning
phenomena. Insights gained from charge density waves
[1] have been extended to describe the critical behavior
of depinning interfaces [2,3]. The renormalization group
(RG) analysis indicates that the interface is a self-affine
fractal at the depinning transition. Narayan and Fisher
have argued that the roughness exponent s, of a d
dimensional critical interface is (4 —d)/3, to all orders of
perturbation theory [3]. However, a number of numerical
[4—6] and experimental results [6,7], mostly in d = 1,
have cast doubt on the generality of this conclusion.

Amaral, Barabasi, and Stanley (ABS) [8] have observed
that numerical results fall roughly into two groups, which
they classify according to the dependence of the average
interface velocity v(s) on its slope s. In one class,
the slope dependence is either absent or vanishes at
the threshold. In the other, A, tt = v"(0) diverges on
approaching the depinning transition. We suggest that
a more natural classification is obtained by considering
the dependence of the threshold force F, (s) on slope,
originating from medium anisotropy. The importance of
such slope dependence, and the role of anisotropy, has
been hinted at in a number of recent publications [3,9—
13], but we believe that it has not been clearly elucidated.
As a bonus, we find a third (and new) universality
class describing the depinning of interfaces tilted with
respect to the anisotropy axis. Interestingly, by taking
advantage of a mapping to growing surfaces in one lower
dimension, we can calculate exactLy the highly anisotropic
roughness exponents of such tilted surfaces. The results
are confirmed by numerical simulations in one and two
dimensions.

Theoretical studies of interface depinning usually start
with the continuum equation,

(3h(x, t) =Vh+F+ f(xh),
Bt

where h(x, t) is the height of the interface at position x at
time t. The first term on the right-hand side describes the

Bh = QI + s'
Bt

Bh fh —sf,

where h(x, t) denotes transverse displacement of the line
and s —= B,h. The nonlinearities generated by v 1 + s2

are kinematic in origin [16] and irrelevant as v: 0 [3],
as can be seen easily by taking them to the left-hand side
of Eq. (2). The shape of the pinned FL is determined
by the competition of the terms in the square brackets.
Although there is no explicit simple s term in this group,
it will be generated if the system is anisotropic.

To illustrate the idea, let us take fh and f„ to be
independent random fields with amplitudes Ah and 6'/,

smoothening effect of surface tension, the second term the
uniform driving force, and the third a random force with
short range correlations. This equation arises naturally
from the energetics of a domain wall in a disordered
medium close to equilibrium [14]; its applicability to
describing Iluid flow in a porous medium [15] is less well
justified. Far from equilibrium, the most relevant local
term consistent with translational symmetry is A(Vh) /2.
The usual mechanisms for generating such a term are of
kinematic origin [16] (A ~ v) and can be shown to be
irrelevant at the depinning threshold where the velocity v
goes to zero [3]. However, if A is not proportional to v
and stays finite at the transition, it is a relevant operator
and expected to modify the critical behavior. As we
shall argue below, anisotropy in the medium is a possible
source of the nonlinearity at the depinning transition.

A model fiux line (FL) confined to move in a plane
[17,18] provides an example where both mechanisms for
the nonlinearity are present. Only the force normal to
the FL is responsible for motion and is composed of
three components: (1) A term proportional to curvature
arising from the smoothening effects of line tension.
(2) The Lorentz force due to a uniform current density
perpendicular to the plane acts in the normal direction and
has a uniform magnitude F (per unit line length). (3) A
random force n - f due to impurities, where n is the unit
normal vector [18]. Equating viscous dissipation with the
work done by the normal force leads to the equation of
motion
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respectively, each correlated isotropically in space within
a distance a. For weak disorder, a deformation of order
a in the normal direction n takes place over a distance
I, » a along the line. The total force due to curvature
on this piece of the line is of the order of L,(a/L, ), and
the pinning force, [(L,/a)(nhAh + n, A, ))' .Equating
the two forces [14] yields L, = a(nhhh + n26„) '/3 and
an effective pinning strength per unit length,

, &a„+ s'S. ~"'
Fo(s) = aL, = a 'l . (3)1+s2 )

The roughening by impurities thus reduces the effective
driving force on the scale L, to F(s) = F —Fo(s).
Therefore, even if initially F is independent of s, such a
dependence is generated under coarse graining, provided
that the random force is anisotropic, i.e., 61, 4 b, . An
expansion of F(s) around its maximum (which defines the
hard direction) yields an s term which is positive and
remains finite as v 0.

The above example indicates the origin of the two types
of behavior for A,&r

——v"(s = 0) observed by ABS [8]:
Kinematics produces a A,ff proportional to Ij which van-
ishes at the threshold; anisotropy yields a nonvanishing
(and diverging) A, ff at the depinning transition. An im-
mediate consequence of the latter is that the depinning
threshold F, depends on the average orientation of the
line. The same effect is seen by adding the nonlinear
term A(Vh) /2 to Eq. (1). While anisotropy may generate
other local terms in the effective equation of motion, at
a symmetry direction, this term is the only relevant one
in the RG sense, capable of modifying the critical be-
havior for d ~ 4. A one-loop RG of Eq. (1) with the
added nonlinearity was carried out by Stepanow [12]. He
finds no stable fixed point for 2 ~ d ~ 4, but his numer-
ical integration of the one-loop RG equations in d = 1

yields g = 0.8615 and a dynamical exponent z = 1. Be-
cause of the absence of Galilean invariance, there is also
a renormalization of A that is related to the diverging A, ff
observed in Ref. [8]. The nonperturbative nature of the
fixed point precludes a gauge of the reliability of these
exponents.

Numerical simulations of Eq. (1), with an added
(Vh)2/2 in d = 1 [11,13], indicate that it shares the
characteristics of a class of lattice models [5,6] where
the external force is related to the density p of "blocking
sites" by F = 1 —p. When p exceeds a critical value
of p„blocking sites form a directed percolating path
which stops the interface. For a given geometry, there is
a direction along which the first spanning path appears.
This defines a hard direction for depinning where the
threshold force F,(s) reaches maximum. Higher densities
of blocking sites are needed to form a spanning path away
from this direction, resulting in a lower threshold force
F,(s) for a tilted interface. Thus on a phenomenological
level we believe that Eq. (1) modified by the inclusion
of nonlinearity, and directed percolation (DP) models

of interface depinning belong to the same universality
class of anisotropic depinning. This analogy may, in
fact, be generalized to higher dimensions, where the
blocking path is replaced by a directed blocking surface
[19,20]. Unfortunately, little is known analytically about
the scaling properties of such a surface at the percolation
threshold.

As emphasized above, the hallmark of anisotropic
depinning is the dependence of the threshold force F, (s)
on the slope s. Above this threshold, we expect v(F, s)
to be an analytical function of F and s. In particular,
for F ) F, (0), there is a small s expansion v(F, s) =
v(F, s = 0) + A,ffs2/2 +. . . On the other hand, we can
associate a characteristic slope s = s&/g~~ —(BF)" '

to DP clusters where BF = F —F,(0), and v is the
correlation length exponent. Scaling then suggests

(4)

v(F„s) " lsl' "" (5)

As z = 1 in d = 1, the above equation reduces to v ~
l
s l,

in agreement with Fig. 1 of Ref. [8]. Since v(F, s) = 0 at
F = F,(s), Eq. (4) suggests

F.(s) —F.(0) (6)
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FKJ. 1. Average interface velocity v versus the driving force
F, for d = 1, s = 0 (open circles); d = 1, s = 1/2 (solid
circles); d = 2, s = 0 (open squares); and d = 2, s = 1/2
(solid squares).

where 0 = v(z —g). Matching Eq. (4) with the small
s expansion, we see that A, fr diverges as (BF) ~ (as
defined by ABS [8]) with @ = 2v(1 —g) —8 = v(2—
s' —z). In d = 1, the exponents v and g are related
to the correlation length exponents vI~ and v& of DP
[21] via v =

v~~
= 1.73 and g = »/v~~ = 0.63, while

the dynamical exponent is z = 1. Scaling thus predicts
P = 0.63, in agreement with the numerical result of
0.64 ~ 0.08 in Ref. [8]. Close to the line F = F,(0) (but
at a finite s), the dependence of v on BF drops out, and
we have
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where g is the ansiotropy exponent, and x, denotes the
d —1 directions transverse to s.

A suggestive mapping allows us to determine the
exponents for depinning a tilted interface: Consider the
response to a perturbation in which all points along a
(d —1)-dimensional cross section of the interface at a
fixed x~~ are pushed up by a small amount. This move
decreases the slope of the interface uphill but increases
it downhill. Since F,(s) decreases with increasing s,
at criticality the perturbation propagates only a finite
distance uphill but causes a downhill avalanche. The
disturbance front moves at a constant velocity (Bx~~ ~ t)
and hence z;~~

= 1. (Such chains of moving sites were
indeed seen in simulations of the d = 2 model discussed
below. ) Furthermore, the evolution of successive cross
sections x, (x~~) is expected to be the same as the evolution
in time of a (d —1)-dimensional interface. The latter
is governed by the Kardar-Parisi-Zhang (KPZ) equation
[16],whose scaling behavior has been extensively studied.
From this analogy we conclude

~(d)
CKPZ ( )

zKpz(d 1)
n(d) =

d
(7)

1

zKpz d 1

In particular, the tilted interface with d = 2 maps to the
growth problem in 1 + 1 dimensions where the exponents
are known exactly, yielding g(2) = 1/3 and q(2) = 2/3.
This picture can be made more precise for a lattice model
introduced below. Details will be presented elsewhere.

To get the exponent 0 for the vanishing of velocity-of
the tilted interface, we note that, since z~~

= 1, v scales
as the excess slope Bs = s —s, (F). The latter controls
the density of the above moving fronts; s, (F) is the
slope of the critical interface at a given driving force F,
i.e., F = F,(s,) Away from the sym. metry direction, the

Note that Eqs. (5) and (6) are valid also in higher
dimensions, though values of the exponents quoted above
vary with d [20].

An interface tilted away from the hard direction not
only has a different depinning threshold, but also com-
pletely different scaling behavior at its transition. This
is because, due to the presence of an average interface
gradient s = (Vh), the isotropy in the internal x space is
lost. The equation of motion for fiuctuations, h'(x, t) =
h(x, t) —s . x, around the average interface position may
thus include terms such as ~s Vh', which break the ro-
tational symmetries in x space. The resulting depinning
transition belongs to yet a new universality class with
anisotropic response and correlation functions in direc-
tions parallel and perpendicular to s, i.e.

(lx, —x', li
([h(x) —h(x')]') = lx((

—x('( l»+
E, lxii

—
X((l& )

lx)[ x~~ l» for x, —x', = 0,
ix) x)l» ~ for x[[ x((

= 0,

function F, (s) has a nonvanishing derivative and hence

BF = F —F, (s) . = F,(s, ) —F, (s) . —Bs —v.

We thus conclude that generically 0 = 1 for tilted inter-
faces, independent of dimension.

To check the above predictions, we performed simu-
lations of the parallelized version of a previously stud-
ied percolation model of interface depinning [5,20]. A
solid-on-solid (SOS) interface is described by a set of in-
teger heights [h;) where I is a group of d integers. With
each configuration is associated a random set of pinning
forces (rt; E [0, 1)). The heights are updated in paral-
lel according to the following rules: h; is increased by
1 if (i) h; ~ h; —2 for at least one j which is a near-
est neighbor of 1, or (ii) 11; ( F for a preselected uni-
form force F. If h; is increased, the associated random
force g; is also updated, i.e., replaced by a new ran-
dom number in the interval [0, 1). Otherwise, h; and

g; are unchanged. The simulation is started with initial
conditions h;(t = 0) = Int[si, ], and boundary conditions
h;+1, = Int[sL] + h; are enforced throughout. The CPU
time is greatly reduced by only keeping track of active
sites.

The above model has a simple analogy to a resistor-
diode percolation problem [19,20]. Condition (i) ensures
that, once a site (i, h) is wet (i.e., on or behind the
interface), all neighboring columns of i must be wet up
to height h —1. Thus there is always "conduction" from
a site at height h to sites in the neighboring columns at
height h —1. This relation can be represented by diodes
pointing diagonally downward. Condition (ii) implies that
conduction may also occur upward. Hence a fraction F
of vertical bonds are turned into resistors which allow for
two-way conduction. Note that, due to the SOS condition,
vertical downward conduction is always possible. For
F ~ F„conducting sites connected to a point lead at the
origin form a cone whose hull is the interface separating
wet and dry regions. The opening angle of the cone
increases with F, reaching 180 at F = F„beyond which
percolation in the entire space takes place, so that all sites
are eventually wet. If instead of a point we start with
a planar lead defining the initial surface, the percolation
threshold depends on the surface orientation, with the
highest threshold for the untilted one.

Our simulations of lattices of 65536 sites in d = 1

and of 512 && 512 and 840 X 840 sites in d = 2 confirm
the exponents for depinning in the hard direction as
summarized in Ref. [20]. For a tilted surface in d = 1

the roughness exponent determined from the height-height
correlation function is consistent with the predicted value
of f = 1/2 and different from g = 0.63 of the untilted
one. The dependence of the depinning threshold on slope
is clearly seen from Fig. 1, where the average velocity
is plotted against the driving force for s = 0 (open) and
s = 1/2 (solid). The s = 0 data can be fitted by a power
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FIG. 2. Height-height correlation functions (a) along and (b)
transverse to the tilt for an 840 system at different times
32 ~ t ~ 1024. The interface at t = 0 is fiat; d = 2, s = 1/2,
and F = 0.144.

law v —(F —F,)e, where F, = 0.461, 8 = 0.63 ~ 0.04
for d = 1, and F, = 0.201, 0 = 0.72 ~ 0.04 for d = 2.
Data at s = I/2 are consistent with Eq. (8) close to the
threshold.

We also measured height-height correlation func-
tions at the depinning transition. For a tilted surface
in d = 2, the height fluctuations and corresponding
dynamic behavior are different parallel and transverse to
the tilt. Figure 2 shows a scaling plot of (a) C~~(q~, t) =
([h(x)( + r((, x„t) —h(x((, x„t)] ) and (b) C, (r„t) =
([h(x~~, x, + r„t) —

h(x~~, x„t)] ) against the scaled dis-
tances at the depinning threshold of an s = 1/2 interface.
Each curve shows data at a given t = 32, 64, . . . , 1024,
averaged over 50 realizations of the disorder. The data
collapse is in agreement with the mapping to the KPZ
equation in one less dimension.

In summary, critical behavior at the depinning of an
interface depends on the symmetries of the underlying
medium. Different universality classes can be distin-
guished from the dependence of the threshold force (or
velocity) on the slope, which is reminiscent of similar de-
pendence in a model of resistor-diode percolation. In ad-
dition to isotropic depinning, we have so far identified two
classes of anisotropic depinning: along a (hard) axis of in-
version symmetry in the plane, and tilted away from it. We
have no analytical results in the former case, but suggest
a number of scaling relations that are validated by simula-
tions. In the latter (more generic) case we have obtained
exact information from a mapping to moving interfaces
and confirmed them by simulations in d = 1 and d = 2.
As it is quite common to encounter (intrinsic or artificially
fabricated) anisotropy for flux lines in superconductors, do-
main walls in magnets, and interfaces in porous media, we
expect our results to have important experimental ramif-
ication.
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