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Long-Range Correlations in Systems with Coherent (Quasi)periodic Oscillations
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Through large-scale simulations of a three-dimensional, deterministic cellular automaton, we
demonstrate the existence of algebraic spatial and temporal correlations in nonequilibrium systems that
break a continuous time-translation symmetry to produce coherent periodic oscillations. Our results
provide the first numerical support for a recent hypothesis that phase fluctuations in such systems are
described by the Kardar-Parisi-Zhang equation. The coefficient of the nonlinear term in the equation is
determined numerically.
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Rayleigh-Benard convection, Taylor-Couette fIow, and
surface waves [1] are among the many extended nonequi-
librium systems found experimentally to exhibit phases in
which some spatial average, typically a Fourier mode, un-

dergoes regular periodic oscillations in time. Theoretical
efforts to understand the spatial coherence necessary to
sustain such oscillations (which break spontaneously the
time-translation invariance of the underlying equations of
motion) have centered primarily on analyzing the domi-
nant low-lying excitations of periodic phases in the pres-
ence of external noise. These excitations determine both
the conditions under which coherence can be maintained
(notably the "lower critical dimension" d, below which it
cannot) and the asymptotic correlations that characterize
stable periodic phases for spatial dimensions d ~ d, .

In a periodic state, the local order parameter m, (x) has a
spatial average (m, (x)) = f(tot), where f(z) = f(z + 2m)
is a periodic function and cu is the oscillating frequency.
Local variations can be incorporated by writing m, (x) =
f(tot + @,(x)), where @ is a fluctuating "phase" field.
Since a uniform @ simply shifts the origin of time, leaving
the physics unchanged, the dominant "soft" excitations in
periodic phases are described by P, (x)'s that vary slowly in
x and t Recently it was. argued [2] that in noisy, isotropic
systems, such hydrodynamic fIuctuations are governed by
the Kardar-Parisi-Zhang (KPZ) equation [3]

aP/at = vV P + —(V@) + g(x, t). (1)
2

Here g is a Gaussian white noise and v and A are constants.
The consequences of this prediction are powerful and

general: For d ~ 2, Eq. (1) is known to have only a
"rough" phase wherein the fiuctuations, ([P(x) —@]2),
of @ diverge algebraically with increasing linear system
size 1. [3], thus destabilizing periodic phases. For d ) 2,
however, Eq. (1) has a "smooth, " weak-coupling phase
[3] for sufficiently small A. In this phase, controlled by a
fixed point at A = 0, the fluctuations are bounded, making

stable, globally coherent oscillations possible. Thus d, is
predicted to be 2 [4]. It follows further (see below) that
for d ~ d, two-point correlations in periodic phases decay
asymptotically like 1/r" 2 or I/ted ~~12 in space and time,
respectively.

Though the chain of arguments underlying these con-
clusions seems reasonable, it has not been tested experi-
mentally, and has to date received only a very weak
numerical test: Consistent with the prediction d,. = 2,
discrete-time lattice models exhibiting apparently stable
quasiperiodic oscillations have been discovered [5] for
d ~ 3 but thus far not for d ~ 2. A detailed character-
ization of fluctuations in these models, which results from
their intrinsic nonlinear dynamics, is lacking. This situa-
tion has left room for competing scenarios [6], for the pos-
sible existence and origin(s) of oscillating states, which do
not invoke the nonlinear diffusive coupling (1).

In this Letter, we present the first confirmation of
the predicted algebraic decays of correlations in periodic
phases, consistent with the proposition that the dominant
hydrodynamic fluctuations are governed by Eq. (1). For
a three-dimensional (3D) cellular automaton (CA) model
with collective quasiperiodic oscillations, we compute
these correlations directly. The behavior of the model
with an externally imposed phase gradient confirms ex-
plicitly the nonlinear diffusive coupling (1) and yields an
estimate for A. In addition, we examine the role of local
correlations in determining the shape of the quasiperiodic
orbit in a systematic mean-field approximation. Since the
CA we study is noiseless, our calculations also provide
evidence that the large-scale behavior of periodic oscilla-
tions in systems whose fluctuations are purely internal and
deterministic [7] can be the same as that in noisy systems,
both being described by Eq. (1).

Due to the efficiency with which they can be imple-
mented numerically, CA furnish a natural testing ground
for theoretical predictions about spatial coherence and sta-
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bility in periodic oscillations. The specific 3D CA model
we consider was introduced by Hemmingsson [8]. In this
model, each site x of a simple cubic lattice with N = I 3

sites is associated with a "spin" variable o.(x) = 0, 1. All
sites are updated simultaneously according to the rule

o.,+t(x) = Ros(s, (x)),

where s, (x) = g„„o., (y) is a sum over site x and its
six nearest neighbors on the lattice [0 ~ s, (x) ~ 7], and
Ro5(s) = 1 for s = 0, 5 and Ro5(s) = 0 otherwise. Start-
ing from random initial conditions, the mean variable
("magnetization"), m, = N ' g„o.,(x), eventually oscil-
lates in time with an irrational period close to 3. Figure 1

shows the return map m, +~ against m, for a 60 system
with periodic boundary conditions. After a short tran-
sient, the orbit converges onto a continuous, closed curve.
Successive points on the orbit wind clockwise around the
center with a phase velocity co = 0.3371 X 2~. The scat-
ter of the points away from a single curve is a finite-size
effect: Statistics show that the width of the strip contain-
ing the orbit decreases as N '~ . For a more complete
description of such collective behavior, see [5].

The shape of the orbit (Fig. 1) is seen already for a
103 system, suggesting that it is mostly determined by
the dynamics of short-distance correlations. To probe
this dynamics, we have considered a set of hierarchical
equations for the n-point correlations of spins. For
example, the one-point function (i.e., mean magnetization)
evolves as

mt+I = (~~+I) = (Ros(st)), (3)

0.4

0.2

where ( ) denotes an average over the initial distribu-
tion of spins, which is assumed to be uniform. Writ-
ing Ros(s, ) as a (unique, seven-variable) polynomial of

o., 's, and further expanding around m, = (rr, ), we ex-
press the right hand side of (3) as a sum of multipoint
coITelatlon functtons of the vartabie o ((x) = o g(x)
with coefficients that depend on m, . The zeroth order
term in o-, yields the simplest mean-field approximation,
m, +~ = (1 —m, ) + 21m, (1 —m, ), which produces the
solid line in Fig. 1. Relations analogous to (3) which ex-
press multipoint correlation functions of o-, +~ in terms of
o., can be obtained in a similar way. They form an in-
finite coupled hierarchy of iterative equations. Trunca-
tion at the second order (keeping only one- and two-point
functions) produces the orbit shown by the diamonds in

Fig. 1. After an initial transient, this orbit converges to a
smooth curve inside the true orbit, with an irrational phase
velocity co = 0.2885 x 2', close to 47r/7 Wit. hin this
second-order approximation, correlations beyond a dis-
tance of three lattice constants have a negligible effect on
the shape of the attractor. Details, higher approximants,
and generalizations to other CA will be described else-
where [9].

Although none of the truncation schemes we have tried
predict the actual orbit with great accuracy, they show that
low-dimensional maps correctly predict the occurrence
of quasiperiodic oscillations in m, . The phase space of
these maps is spanned by the magnetization and a few
short-distance correlations, which together approximate
the state of the system at a given time. On the other
hand, such mean-field schemes typically do not shed light
on how long-range spatial coherence is established, and
whether it is stable against the intrinsic fluctuations clearly
seen in simulations of small systems. Coherence can
only be maintained in a large system through the mutual
coupling and entrainment of the local phases.

To test the nonlinear diffusive mechanism for such
entrainment proposed in Ref. [2] [i.e., the coupling of the
phases through Eq. (1)], we have examined the behavior
of spin-spin correlations at large distances and long times.
On a suitably coarse-grained level, one can write the local
magnetization as m, (x) = f(rut + @,(x)). Fluctuation of
m, (x) away from its spatially averaged value m, is given
by Bm, (x) —= m, (x) —m, = f'(rut)@, (x) for small @,(x).
It then follows that

(~m~(x)~m (y)) = [f'(~t)]'(4t(x)4 (y)). (4)
In the weak-coupling phase of (1) for d ) d, . = 2, the
right hand side of (4) decays at large distances as ~x-
y~ ". Hence we have

(Bm, (x)6m, (y)) = A(t)~x —y~, (5)
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where the amplitude A(t) is positive. Similar considera-
tions yield the autocorrelation in time,

(Bm, (x)6m, (x)) = B(t, t')~t —t'~ " ', (6)

FIG. 1. Return plots of the magnetization m(t) for the Hem-
mingsson rule on a 60' lattice (dots) and the hierarchical ap-
proximation truncated at second order (diamonds). The solid
line gives the zeroth order mean-field map.

where the amplitude B(t, t') oscillates, taking on both
signs. Since m, (x) is a local average of the spins, bare
spin-spin correlations have the same large-distance, long-
time behavior as those given by Eqs. (5) and (6).
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FIG. 2. Log-log plot of the spin-spin correlation function
C(r, to) for a 5123 system (periodic boundary conditions).
The dashed line has slope —1. From bottom to top: tp =
2048, 2560, 3564, 7680, 15 872. Inset: same for rule Rp4.
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FIG. 3. Log-log plot of the absolute value of the autospin time
correlation function ~S(to, t)~ for a 256' system with periodic
boundary conditions. The dashed line has slope —1/2.

Figure 2 shows the two-point spin-spin correlation
t0+T

C(r, to) = g g[o-, (x)o-, (x + ra) —m, ],NT,

obtained from a single simulation of a 512~ system with
an initially random configuration. Here a is any of the
three basis vectors of the lattice, and T = 89 is chosen to
achieve an approximately uniform sampling of the orbit.
Buildup of spatial correlations with increasing time to is
clearly seen. For the largest to, the data have almost
reached saturation (apart from finite-size effects). The
correlation is ferromagnetic, and is well described by a
1/r decay at large r, consistent with (5).

Figure 3 shows the autospin time-correlation function

1
S(ro, t) = —P [o,„(x)o,(x) —m, „m,],

X

where to = 5000. As expected, this function oscillates
in t, but the envelope of the oscillation decays as ~t-
to~ '~, consistent with (6).

For comparison, we simulated a different 3D CA
model, wherein the function Roz(s) is replaced by Rp4(s),
which equals 1 if s = 0, 4 and 0 otherwise. This rule pro-
duces a state with strong local fluctuations but without
global oscillations or other discernible spatial order. Spa-
tial correlations decay much faster (e.g. , exponentially)
than do those in Hemmingsson's rule. (See the inset of
Fig. 2 for the equal-time spin-spin correlation. ) The au-
tospin function S(t, to) decays much faster with ~t

—
to~

too. This supports our ascribing the algebraic decays in
the original R05 CA to the broken symmetry produced by
the oscillations.

Returning to the R05 rule, since linear diffusion [A =
0 in Eq. (1)] would produce identical power laws, we
performed a phase-gradient experiment to show that A

is in fact nonzero. We take a system with N = I.~~~L~~

sites (L~~ being the length in the x direction) and periodic
boundary conditions. An initially random configuration
is iterated 1000 time steps (A system). The lattice is then
divided into K slices of width L~~/K along the x direction.
While keeping the A system running, a new configuration
(B system) is constructed by copying consecutive slices
from the A system, one at a time, separated by ~ iterations.
The number 7- is chosen such that the orbit points
(I,, m, +i) and (m, +„m,+,+~) are not too far apart, so that
the phase difference between neighboring slices is small.
(Typically, we used r = 36 for L~~

= 300 and K = 30.)
In this way, an overall phase difference of 5@ = 2n7r
across the B system is established. This new configuration
is then iterated further.

Figure 4 shows the evolution of the magnetization
profile m(x, t) of a B system with L~ = 300 and L& = 64
(x runs horizontally). Each dot represents an average over
the spins in a two-dimensional layer perpendicular to the
x axis. Amplitude of m sets the gray scale. Successive
profiles are separated by 89 time steps. The wave pattern
drifts to the left in time at a well-defined velocity v =
0.021. Figure 5 shows a plot of v against the phase
gradient u = 5@/L~~~[10]. The data can be fitted by the
functional form v = (A/2)u + eu ', with A = 0.6 and
e = 0.00013, as shown by the solid line. The u ' term is
easily seen to arise from the small residual phase shift,
6 —= 89m = 89co(mod2~) = 0.012, after 89 iterations in
the uniform system; the u term confirms the phase
velocity increase, Ace = (A/2)u2, predicted by Eq. (1) in
the presence of a finite phase gradient [11].

To summarize, in the context of a 3D CA model
with quasiperiodic oscillations, we have carried out the
first test of a general theory of the fiuctuations and
large-scale behavior of temporally periodic phases that
break a continuous time-translation symmetry. Spin-

914



VOLUME 74, NUMBER 6 PH YS ICAL REVIEW LETTERS 6 FEBRUARY 1995

|QE~~'; ' ";;

,gg~P ..:::9is'a

.Skii:::::::::''ii'" , ms

$i ~s i
gy'K::.::.::."'''"

i

a%,r@"::.' '

:.::', ';.' ' ',:;x.ik ..

.rgb. ..".'.:'.:.:;

""'"''" """"'80..~R?:::::s::::waist%'

.ii'. '.N::.::'':.i 5P

8:::":::::"''""
..p;",".;:,:.'.':.'::."N: .

: ... ,: '..::::::;:,:;:;i'm/:::'::sr"'

'P ' '.'.'.' ' '. .' ' '@gg .EE,"'

~ ~ .A:;ii::'..:iiag?%/4~ ~$xiii:g;:

~w s-.':i;.;:,s"..,;:;:;.;:;:;:;:,ip-- - '-

FIG. 4. Time evolution (top to bottom) of layer-averaged
magnetization profile (set by gray scale) in a system of size
300 && 64~, and a total phase difference AP = 67r initially
distributed over K = 30 slices, shown for 300 X 89 iterations.

spin correlations decay algebraically, with exponents
consistent with the hypothesis that fiuctuations of the
hydrodynamic (phase) variable are governed by the KPZ
equation. By studying the dynamics in the presence of a
phase gradient, we determined the coefficient of the KPZ
nonlinearity. It is interesting that though the theory was
designed for noisy systems, it seems to describe correctly
the R05 CA, whose "noise" is internal and deterministic,
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FIG. 5. Equiphase velocity u vs phase gradient 6 @/L I~

determined graphically from images similar to Fig. 4. The solid
line shows a fitted form, consisting of a linear part due to an
increased phase velocity, and a correction (pronounced at small
gradients) due to the small phase shift of the reference uniform
system after 89 iterations.

thus deterministic chaos and random noise can produce
periodic phases with the same asymptotic properties.
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