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Given an expression for the quantum mechanical action A[¢;,] of an N-electron system as a
functional of N time-dependent spin orbitals, we present a method of constructing the variationally best
local time-dependent single-particle potentials v, (rr) which, when inserted in time-dependent single-
particle Schrodinger equations for the spin-up and spin-down electrons yield orbitals {¢;,(r?)} that
make A[¢;,] stationary. We also propose a simplification of this scheme leading to a time-dependent
generalization of the static optimized effective potentials recently introduced by Krieger, Li, and Iafrate

[Phys. Lett. A 146, 256 (1990)].
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Owing to rapid experimental progress in the field of
laser physics, ultrashort laser pulses of very high intensity
have become available in recent years. The electric field
produced in such pulses can reach the strength of the
electric field caused by atomic nuclei. If an atomic system
is placed in the focus of such a laser pulse, one observes a
wealth of new phenomena [1] which cannot be explained
by perturbation theory. The nonperturbative quantum
mechanical description of interacting particles moving in
a very strong time-dependent external field therefore has
become a prominent problem of theoretical physics.

Since its rigorous foundation by Runge and Gross [2],
time-dependent density functional theory (TDDFT) [3—
5] is available as a method to deal with time-dependent
many-particle problems of this kind. The central state-
ment of TDDFT is that the time-dependent density n(r?)
of a system of interacting particles moving in an ex-
ternal potential vey(rz) can be calculated, in principle
exactly, from a set of time-dependent single-particle
equations which can be viewed as the time-dependent
counterpart of the Kohn-Sham scheme. These single-
particle equations involve an exchange-correlation poten-
tial, v,.(rt), which is a functional of n(rt) and has to
be approximated in practice. An extension of TDDFT
to spin-polarized systems has been proposed by Liu and
Vosko [6]. Neglecting magnetic effects associated with
the orbital motion of the electrons, they consider external
time-dependent potentials acting on electrons with spin o
only. In this case, two different vy, (r?) corresponding to
the two spin orientations are needed which are functionals
of the spin densities n,(rt). Again, the key problem
is to obtain good approximations of vy.,(rz). To date,
only a rather crude adiabatic approximation is available
which adopts the functional form of the static exchange-
correlation potential.

The purpose of this paper is to introduce a different
approach to the construction of vy.,(rt) which can be
viewed as a time-dependent version of the so-called
optimized potential method (OPM). The approach leads
to vxco as a function of (rr) rather than to v.., as an
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explicit functional of the spin densities. The OPM
of stationary systems [7,8] takes as starting point a
given expression for the total energy E[¢;,] of an N-
electron system as a functional of a set of spin orbitals
{¢jo(r)} (e.g., the Hartree-Fock total energy functional
in the exchange-only case). Then, the variationally best
local effective potential is determined for each spin
orientation such that, when inserted in a stationary single-
particle Schrodinger equation, it yields the set of N =
> + N, eigenfunctions (corresponding to the N, lowest
eigenvalues) that minimize E[¢j,]. In practice, the full
OPM scheme is computationally quite involved since it
requires the numerical solution of an integral equation
for each wy.,(r). As a consequence, complete OPM
calculations have been performed mainly for problems
where the potential is a function of a single variable, e.g.,
for spherically symmetric atoms [8—13]. There exists,
however, an approximate OPM scheme, recently proposed
by Krieger, Li, and Iafrate (KLI) [14—21], which is
numerically as easy to handle as the ordinary Kohn-Sham
scheme. This simplified OPM has been applied very
successfully to the calculation of atomic properties.

In order to derive a time-dependent generalization of
the OPM we consider an N-electron system at some finite
time o which, for all times up until 7y, has been in the
ground state associated with an external potential v, (r)
(e.g., a nuclear Coulomb potential plus a static magnetic
field coupling to the electronic spins only). We assume
that the corresponding stationary OPM problem has been
solved for that system, i.e., a local effective potential
for each spin orientation and a set of N spin orbitals
{¢jo} (with energy eigenvalues &;,) minimizing a given
energy functional E[¢;,] are assumed to be known. At
t = to an additional time-dependent potential v, (rz) is
switched on. Our goal is to determine the time evolution
of the system under the influence of the total external
potential vex o (rs) = v, (r) + vy, (rz) from ¢, up until an
arbitrary later time ;. To construct an optimized local
effective potential we start with the quantum mechanical
action
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Ny fn t
A[¢0] = dt d3 ¢*0( l)(a/at + Vz/z)d)a( t) - dt d3 o’( t) exlo’( t)

1 n , (t /t
- Efod[[d3rfd3r ‘*“”—_nlll: )—n(:’l) - Axc[¢ja] (1)

written as a functional of N = Y _ N, time-dependent spin orbitals {$js(rr)}, where n(rt) = ,n,(rt) =

>, Zjv” |<f>_,¢,(rt)|2 [atomic (Hartree) units are used throughout]. In the following no specific approximation is used for
the exchange-correlation functional Ay.[¢;,], but we mention that in an exchange-only theory A,. would be replaced by

the time-dependent Hartree-Fock (TDHF) expression

Ny fn
A = —3 dt | &r | &r ¢l (' Dbis(rt)pl, (ct) [ I — 1/l )
133 [afar [ ) ot/

The orbitals are solutions of the time-dependent Schrodinger equation

i(3/00)jo(rt) = [=V?/2 + v, (rt)]d ;o (r1), Jj=1...,Ns, 3)

with the initial condition ¢;,(rt) = ¢;s(r)exp[—ie;s(t — to)] for —o0 <t = 1.

by

The local effective potential is given

Vo (1) = Ve (F1) + f B D/l — F] + veeo (r1), @)

v, (rt) has to be determined in such a way that the {¢,(r¢)}, resulting from Eq. (3), render the total action functional
Al¢ ;] stationary. Therefore, we have to solve the following variational problem:

6A[¢ja’] _ & oo / 3 8A[¢ja’] 5¢ja‘(rltl)
- ;f_w a [ a ’(agbjo(r'ﬂ) sv,D)

Sv,(rt)

8Aldjs] 5¢;U(r't’)) =0 &)

8¢, (x't") Svg(rr)

In order to compute the functional derivative 6A/8¢ ., | Schrodinger equation

the first term of Eq. (1) has to be integrated by parts
with respect to the time coordinate. We impose the usual
boundary condition on ¢, (rt) at t = 1, i.e., P, (rt;) =
0, thus obtaining a zero boundary contribution. The other
boundary contribution at ¢+ = —oo vanishes, too, because
the action functional (1), in order to be well defined, is
to be calculated by introducing the usual factor exp(n1¢)
in the integrand and taking lim,_.o+ after the integration.
Then, substituting Eq. (4) and making use of the fact
that ¢/, solves the complex conjugate of the Schrodinger
equation (3), we find

Aol _ PN
Sd)j(r(l'/tl) = [cha'(r t ) uijg'(r t )]
X @i, (0’0t — 1), (6)
where Al ]
nejo (F1) = — el e ©)

d);o(rt) 8¢ja’(r[) ’
and 6(x) denotes the usual step function (1 for x > 0,
0 for x < 0). An analogous expression is obtained for
8A/6 d)f,,, which, for all reasonable (i.e., real) functionals
Al¢ ], is the complex conjugate of (6).

In order to evaluate §A/8v, from Eq. (5), we further
need the functional derivatives 6 ¢;,/6v, and 6 ¢ j*g /v,
To this end, we consider the orbitals {¢;,(r?)} as un-
perturbed states, remembering that at 7 = 7, the or-
bitals are held fixed with respect to variations in the
total potential. We therefore start from ¢ = ¢, subject the
system to an additional small perturbation v, (r¢) and let
it evolve backward in time. The corresponding perturbed
wave functions qb,’-(,(rt) are determined by the backward

i(0/00)],(rt) = [=V?/2 + vy(r) + dv,(r1)l), (r1),

j=1...,Ns, (8)

with the initial condition ¢j,,(rt1) = ¢;o(rt;). This prob-
lem cannot be treated directly with time-dependent pertur-
bation theory as described in standard textbooks because
the unperturbed Hamiltonian is already time dependent.
Nevertheless, Dirac’s method of variation of constants can
be applied in a straightforward manner. It follows [22]
that the first-order correction to the wave function ¢, (rr)
under the influence of v, (rz) is given by

8djs(rt) = i; [ttl dt/_/ dA3r ¢Za(r/t/)5vg(r/t/)
X bjo(r't) pra(re). 9)

Therefore, the desired functional derivative is

8¢i.(r't) & .
v 2y Pl DB DB (L)
X 0(t; — )6t — t'). (10)
Once again, 8¢;,/8v, leads to the complex conjugate
expression. We can now insert (6) and (10) in the varia-
tional equation (5), and the result is the time-dependent
OPM (TDOPM) integral equation for the local exchange-
correlation potential vy, (re):

No t
lZf dt/f dsr/[vxca(r/tl) - uxcjcr(rlt/)]
J —o
X¢js(rt)p;, (x't)Ky(re,x't') + cc. =0. (11)
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The kernel K,(rt,r't') =37 | dro(xt) i (r't)0(t —
t') can be identified with the Green’s function of the
system, which satisfies the differential equation

{iafot' — [=V'?/2 + v ('t K,(rt,x't))
= —id(r —r")é(t — t'), (12)

with the initial condition K, (rt,r’t’) = 0 for ¢t/ > ¢t. The
TDOPM scheme is now complete: the integral equation
(11) has to be solved for wvy.,(rt) in combination with
the Schrédinger equation (3) and the differential equation
(12) for K, (rz,r't’), both with the appropriate initial con-
ditions. It is easy to show that in the time interval [ —oo, 7, ]
the exchange-correlation potential vy, (r¢) is only deter-
mined up to within an additive, purely time-dependent
function c(¢) (as expected in view of the time-dependent
Hohenberg-Kohn theorem [2]). Also it can be demon-
strated [22] that for time-independent external poten-
tials [v,(rt) = 0] the TDOPM reduces to the stationary
OPM.

The numerical implementation of the full TDOPM is an
extremely demanding task. It is therefore most desirable
to obtain a simplified scheme. To this end we shall
perform a transformation of Eq. (11) similar to the one
proposed by KLI in the stationary case [18,21]. This will
lead to an alternative but still exact form of the TDOPM
scheme which allows one to construct approximations
of vy, (rt) which are explicit functionals of the orbitals

{¢;s}, thereby avoiding the need to solve the integral
equation. Following Refs. [18] and [21], we define

pjo'(rt) = qu%(ll‘t) [ﬁm dt,[ d3r,[vxca'(r/t/) - uxcjo(r/t/)]

X §5, (') > i k) io(r't)0( = ), (13)
and

Tejo () = f Br (Do), (14)

where n;,(rt) = |¢;,(rt)|?>. Equation (11) can then be
written as

N,

an,,(rt)pj(,(rt) + cc. =
J

No t
— iZ nje(rt) f dt’
j —oc
X [ﬁxcju‘(t/) - Eicj(r([,)]7
(15)
and it is easy to show that

der nje(rt)pjs(rer) = 0. (16)

Evaluating ¢ ;,(r)[—id/dt + V2/2 — v, (r1)]p;,(rt) X
pjo(rt), we find after some straightforward algebra that
| P jo(rt) satisfies the following differential equation:

V  [nje@t)Vpie(rt)]/2 — inje(x)dp;s(rt)/dt — iJ;x(rt)

*Vpjo(re)

= _nja(rt){vxca(rt) - uxcjo'(rt) - [Fxcju(t) - ﬁxcja(t)]}v an

with the current density J;o(r1) = 2i)7'[¢j,(x)V,(r1) — ¢, (c1)Vh/o(r1)] and Tycjo (1) = [d%r njg(xt)vyeq(ri).
Finally, operating with V2 on Eq. (15) and using (17) we find

1 = 1 X
Uyeo (re) = mznjo'(rt) E[M;(cja(rt) + M;ng.(l'l‘)] +
a J

1

ne(

& 1
2y 210000 [Prso )~ 5 i) + s, 01

. NU !
+ 4nal(rt) ;Vzl’lja'(rt) j_w dt,[uxcj,,(t') _ ﬁicja’(t/)]5 as)
where
1
o (00) = treso €0) + n,-nl(m[iv [Pio TV (0] + ingy (00) 2 pj6) + i (r1) - Vchr(l‘t)] (19)

Equations (18) and (19) together with the differential equation (17) for p;,(rr) and the condition (16) [which can be
used to fix the constant left undetermined by Eq. (17)] represent an exact alternative formulation of the TDOPM scheme.
The advantage of Eq. (18) lies in the fact that it is a very convenient starting point for constructing approximations of
Uyco(r?) as explicit functionals of the {¢;,(rs)}: It is only necessary to approximate p;.(rt) in Eq. (19) by a suitably
chosen functional of the orbitals. We can then readily solve Eq. (18) analytically for vy.,(rt), as we shall show
below.

We expect an approximate potential ¥y, (rr) defined in this way to be close to the exact vy, (rz). This conjecture
is based on the observation that the difference between @y, and vy, is entirely accounted for by the differences
Uhe jo — Uxcjo» Which are zero if averaged over the jorth orbital:

E;cjg(t) = Tycjo(t) = %f d*rv - [pjoc(rt)Vnj,(re)] + ifd3r[nj,,(rt) % Pjo(rt) + Jo(rt) - ij,,(rt):' = 0. (20)

The last equality follows [22] by using the divergence theorem and the continuity equation for the joth orbital and then
applying Eq. (16).
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The simplest approximation is obtained by replacing p;, by its average value, i.e., by setting p;,(rt) = 0. The
resulting approximate potential 9., is then determined by

1

e

1 & 1 * - 5 L. ur
Bueo 1) = s 3 o) 3 L) + 5 (01 s 3 o0 B () = 5 (i) + i )

. No ,
e PRIRE f@ A ey (1) = ey (1], o

l

This equation is still an integral equation for ¥y.,. It does not increase the numerical effort involved in the
can, however, be solved analytically [17]: Multiplying exchange-only case.

Eq. (21) by ni,(rr) and integrating over all space yields We thank J. B. Krieger for very stimulating discussions
Ny and for giving us a preprint of his latest work. One of us
Dyeko (t) = Wyeko(2) + Z Myjo(t)Dxcjo (1), (22) (C. A.U.) acknowledges the support of a fellowship of the

Jj Studienstiftung des deutschen Volkes.

where w,.,(rt) denotes the right-hand side of Eq. (21)
minus [, (c0)] 7" 337 1, (¢1) ;o (1), and

M. (f) — f d3r nko’(rt)nja'(rt) (23)
kjo ne(re) [1] Atoms in Intense Laser Fields, edited by M. Gavrila
. — . . . (Academic Press, Boston, 1992).
Solving Egq. (22) for ¥xcjo (1) requires inversion of the [2] E. Runge and E.K.U. Gross, Phys. Rev. Lett. 52, 997
Ny X N, matrix Agjo(t) = 6x; — Myj(1), and leads to (1984).
. No [3] E.K.U. Gross and W. Kohn, Phys. Rev. Lett. 55, 2850
Txejo(t) = D [A (O] Freko (1) (24) (1985); 57, 923(E) (1986).
k [4] E.K.U. Gross and W. Kohn, Adv. Quant. Chem. 21, 255
When Eq. (24) is substituted into Eq. (21), one obtains (1990).
Dy (r?) as an explicit functional of the orbitals {d’ju(”)}« [S] O.-J. Wacker, R. Kiimmel, and E. K. U. Gross, Phys. Rev.

Lett. 73, 2915 (1994).
[6] K.L. Liu and S. H. Vosko, Can. J. Phys. 67, 1015 (1989).
[7]1 R.T. Sharp and G. K. Horton, Phys. Rev. 90, 317 (1953).
[8] J.D. Talman and W.F. Shadwick, Phys. Rev. A 14, 36

We point out that the construction of ¥y, (r¢) does not
involve the introduction of a corresponding approximate
Al ¢jo] in addition to the given A[¢;r]. We empha-

size, however, that, in contrast to the exchange-correlation (1976).
energy of the static OPM, the functional Ay, is not a quan- [9] M.R. Norman and D. D. Koelling, Phys. Rev. B 30, 5530
tity of physical interest because the value of the exact total (1984).

action is always zero at the stationary point. As the exact [10] J.D. Talman, Comput. Phys. Commun. 54, 85 (1989).
Vxco (rt), which follows from Eq. (11), Do (r?) is deter- [11] Y. Wang, J.P. Perdew, J. A. Chevary, L.D. Macdonald,

mined by Eq. (21) only up to within an additive, purely and S. H. Vosko, Phys. Rev. A 41, 78 (1990).
time-dependent function c(z). [12] E. Engel, J.A. Chevary, L.D. Macdonald, and S.H.
The last term of Eq. (21) vanishes identically for a Vosko, Z. Phys. D 23, 7 (1992).

[13] E. Engel and S.H. Vosko, Phys. Rev. A 47, 2800 (1993).

[14] J.B. Krieger, Y. Li, and G.J. Iafrate, Phys. Lett. A 146,
256 (1990).

[15] J.B. Krieger, Y. Li, and G.J. Iafrate, Phys. Lett. A 148,

large class of exchange-correlation functionals Ay.. This
class includes all functionals depending on {¢;,} only
through the combinations ¢j(,(rt)¢;g(r/t) [such as the

TDHF functional, Eq. (2)]. 470 (1990).

The time-dependent KLI (TDKLI) approximation [16] Y.Li, J. B. Krieger, M. R. Norman, and G.J. Iafrate, Phys.
consisting of Eq. (21), combined with the Schrédinger Rev. B 44, 10437 (1991).
equation (3), represents a time-dependent scheme which [17] J.B. Krieger, Y. Li, and G.J. Iafrate, Phys. Rev. A 45,
is numerically less involved than, e.g., the TDHF method, 101 (1992).
because the optimized effective potential is local in [18] J.B. Krieger, Y. Li, and G.J. Iafrate, Phys. Rev. A 46,
configuration space. From experience with the static 5453 (1992).
KLI scheme in the exchange-only limit [13,16-21], [19] J.B. Krieger, Y. Li, and G.]J. Iafrate, Chem. Phys. Lett.
we expect the results of the full TDOPM scheme, the 191, 38 (1992).

[20] Y. Li, J. B. Krieger, and G.J. Iafrate, Phys. Rev. A 47,
165 (1993).
[21] J.B. Krieger, Y. Li, and G.J. Iafrate, in Density

TDKLI approximation and the full TDHF method to
agree very closely with each other. Atomic systems

subject to intense laser pulses are currently being studied Functional Theory, edited by E.K.U. Gross and R.M.
using the TDKLI approximation. Given an approximate Dreizler (Plenum Press, New York, 1994), p. 191.
functional for the correlation part of A.[¢)s], the prin- [22] E.K.U. Gross, C.A. Ullrich, and U.J. Gossmann, in
cipal advantage of the TDOPM and TDKLI schemes is Density Functional Theory, edited by E.K.U. Gross and
that the inclusion of time-dependent correlation effects R. M. Dreizler (Plenum Press, New York, 1994), p. 149.

875



