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Time-Dependent Optimized Effective Potential
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Given an expression for the quantum mechanical action A[/, ] of an ¹lectron system as a
functional of N time-dependent spin orbitals, we present a method of constructing the variationally best
local time-dependent single-particle potentials v (rt) which, when inserted in time-dependent single-
particle Schrodinger equations for the spin-up and spin-down electrons yield orbitals [P, (rt) j that
make A[/, ] stationary. We also propose a simplification of this scheme leading to a time-dependent
generalization of the static optimized effective potentials recently introduced by Krieger, Li, and Iafrate
[Phys. Lett. A 146, 256 (1990)].

PACS numbers: 31.10.+z, 03.65.—w, 31.15.Ew

Owing to rapid experimental progress in the field of
laser physics, ultrashort laser pulses of very high intensity
have become available in recent years. The electric field
produced in such pulses can reach the strength of the
electric field caused by atomic nuclei. If an atomic system
is placed in. the focus of such a laser pulse, one observes a
wealth of new phenomena [1] which cannot be explained
by perturbation theory. The nonperturbative quantum
mechanical description of interacting particles moving in
a very strong time-dependent external field therefore has
become a prominent problem of theoretical physics.

Since its rigorous foundation by Runge and Gross [2],
time-dependent density functional theory (TDDFT) [3—
5] is available as a method to deal with time-dependent
many-particle problems of this kind. The central state-
ment of TDDFT is that the time-dependent density n(rt)
of a system of interacting particles moving in an ex-
ternal potential v,„,(rt) can be calculated, in principle
exactly, from a set of time-dependent single-particle
equations which can be viewed as the time-dependent
counterpart of the Kohn-Sham scheme. These single-
particle equations involve an exchange-correlation poten-
tial, v„,(rt), which is a functional of n(rt) and has to
be approximated in practice. An extension of TDDFT
to spin-polarized systems has been proposed by Liu and
Vosko [6]. Neglecting magnetic effects associated with
the orbital motion of the electrons, they consider external
time-dependent potentials acting on electrons with spin o-

only. In this case, two different v„, (rt) corresponding to
the two spin orientations are needed which are functionals
of the spin densities n (rt) Again, the . key problem
is to obtain good approximations of v„, (rt). To date,
only a rather crude adiabatic approximation is available
which adopts the functional form of the static exchange-
correlation potential.

The purpose of this paper is to introduce a different
approach to the construction of v„, (rt) which can be
viewed as a time-dependent version of the so-called
optimized potential method (OPM). The approach leads
to v„, as a function of (rt) rather than to v„, as an

explicit functional of the spin densities. The OPM
of stationary systems [7,8] takes as starting point a
given expression for the total energy E[p, ] of an N
electron system as a functional of a set of spin orbitals
(p, (r)) (e.g. , the Hartree-Fock total energy functional
in the exchange-only case). Then, the variationally best
local effective potential is determined for each spin
orientation such that, when inserted in a stationary single-
particle Schrodinger equation, it yields the set of N =

N eigenfunctions (corresponding to the N lowest
eigenvalues) that minimize E[p, ]. In practice, the full
OPM scheme is computationally quite involved since it
requires the numerical solution of an integral equation
for each v„(r). As a consequence, complete OPM
calculations have been performed mainly for problems
where the potential is a function of a single variable, e.g. ,
for spherically symmetric atoms [8—13]. There exists,
however, an approximate OPM scheme, recently proposed
by Krieger, Li, and Iafrate (KLI) [14—21], which is
numerically as easy to handle as the ordinary Kohn-Sham
scheme. This simplified OPM has been applied very
successfully to the calculation of atomic properties.

In order to derive a time-dependent generalization of
the OPM we consider an N-electron system at some finite
time to which, for all times up until to, has been in the
ground state associated with an external potential vo (r)
(e.g. , a nuclear Coulomb potential plus a static magnetic
field coupling to the electronic spins only). We assume
that the corresponding stationary OPM problem has been
solved for that system, i.e., a local effective potential
for each spin orientation and a set of W spin orbitals

) (with energy eigenvalues e, ) minimizing a given
energy functional E[p, ] are assumed to be known. At
t = to an additional time-dependent potential v~ (rt) is
switched on. Our goal is to determine the time evolution
of the system under the infIuence of the total external
potential v,„, (rt) = vo (r) + vi (rt) from to up until an
arbitrary later time tI. To construct an optimized local
effective potential we start with the quantum mechanical
action
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The kernel K (rt, r't') = g„,Pz (rt)@k (r't')8(t-
t') can be identified with the Green's function of the
system, which satisfies the differential equation

(@, ), thereby avoiding the need to solve the integral
equation. Following Refs. [18] and [21],we define

(ia/at' —[—V"/2 + v (r't')])K (rt, r't')
l

p, (rt)=~,
( )

dt' d r'[v„(r't') —u„~ (r't')]

i—6 (r —r') 6 (t —t'), (12)

with the initial condition K (rt, r't') = 0 for t' ) t. The
TDOPM scheme is now complete: the integral equation
(11) has to be solved for v„(rt) in combination with
the Schrodinger equation (3) and the differential equation
(12) for K (rt, r't'), both with the appropriate initial con-
ditions. It is easy to show that in the time interval [—~, t&]
the exchange-correlation potential v„(rt) is only deter-
mined up to within an additive, purely time-dependent
function c(t) (as expected in view of the time-dependent
Hohenberg-Kohn theorem [2]). Also it can be demon-
strated [22] that for time-independent external poten-
tials [vi (rt) —= 0] the TDOPM reduces to the stationary
OPM.

The numerical implementation of the full TDOPM is an
extremely demanding task. It is therefore most desirable
to obtain a simplified scheme. To this end we shall
perform a transformation of Eq. (11) similar to the one
proposed by KLI in the stationary case [18,21]. This will
lead to an alternative but still exact form of the TDOPM
scheme which allows one to construct approximations
of v„, (rt) which are explicit functionals of the orbitals

and

X P,
* (r't') g @I*, (rt)@q (r't')0(t —t'), (13)

k=1
kwj

uxcj cr (t) d r nj (rt)u„,) (rt), (14)

where n, (r t) =
~ @, (r t) ~

. Equation (11) can then be
written as
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p, (rt) satisfies the following differential equation:
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Finally, operating with V on Eq. (15) and using (17) we find
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Equations (18) and (19) together with the differential equation (17) for p, (rt) and the condition (16) [which can be
used to fix the constant left undetermined by Eq. (17)] represent an exact alternative formulation of the TDOPM scheme.
The advantage of Eq. (18) lies in the fact that it is a very convenient starting point for constructing approximations of
v„(rt) as explicit functionals of the (@, (rt) t: It is only necessary to approximate p, (rt) in Eq. (19) by a suitably
chosen functional of the orbitals. We can then readily solve Eq. (18) analytically for u„, (rt), as we shall show
below.

We expect an approximate potential u„(rt) defined in this way to be close to the exact v„, (rt). This conjecture
is based on the observation that the difference between v„and v„, is entirely accounted for by the differences
u,'„—u„„,which are zero if averaged over the jo-th orbital:

u„', (t) —u„,j (t) =
2 d rV [p~ (rt)Vnj (rt)] + i d r nj (rt) —p, (rt) + JJ (rt) Vp~ (rt) = 0. (20)

The last equality follows [22] by using the divergence theorem and the continuity equation for the jo th orbital and then
applying Eq. (16).

874



VOLUME 74, NUMBER 6 PH YS ICAL REVIEW LETTERS 6 FEBRUARY 1995

v„, (rt) =

The simplest approximation is obtained by replacing p, by its average value, i.e. , by setting p, (rt) =—0. The
resulting approximate potential v„ is then determined by

1
'

1gn, (rt) —[u„„(rt) + u'„(rt)] +

N
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4n rt
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&
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This equation is still an integral equation for 6„, . It
can, however, be solved analytically [17]: Multiplying
Eq. (21) by nk (rt) and integrating over all space yields

N

v«1 ~(t) = w«p~(t) + QMkj (t)v„~ (t), (22)
J

where w„(rt) denotes the right-hand side of Eq. (21)
minus [n (rt)] ' g n~ (rt)v „(t),and

nk (rt)nj (rt)M„.(t) = d'r
n rt (23)

Solving Eq. (22) for v„„(t) requires inversion of the
N X N matrix At„(t) = Bql —Mk, (t), and leads to

-, (t) = +[A '(t)],kw-k (t). (24)
k

When Eq. (24) is substituted into Eq. (21), one obtains
v„, (rt) as an explicit functional of the orbitals {@, (rt))
We point out that the construction of v„, (rt) does not
involve the introduction of a corresponding approximate
A„,[@, ] in addition to the given A„,[P, ]. We empha-
size, however, that, in contrast to the exchange-correlation
energy of the static OPM, the functional A„ is not a quan-
tity of physical interest because the value of the exact total
action is always zero at the stationary point. As the exact
v„, (rt), which follows from Eq. (11), v„, (rt) is deter-
mined by Eq. (21) only up to within an additive, purely
time-dependent function c(t)

The last term of Eq. (21) vanishes identically for a
large class of exchange-correlation functionals A„. This
class includes all functionals depending on tP, ) only
through the combinations P, (rt)@,

* (r't) [such as the
TDHF functional, Eq. (2)].

The time-dependent KLI (TDKLI) approximation
consisting of Eq. (21), combined with the Schrodinger
equation (3), represents a time-dependent scheme which
is numerically less involved than, e.g. , the TDHF method,
because the optimized effective potential is local in
configuration space. From experience with the static
KLI scheme in the exchange-only limit [13,16—21],
we expect the results of the full TDOPM scheme, the
TDKLI approximation and the full TDHF method to
agree very closely with each other. Atomic systems
subject to intense laser pulses are currently being studied
using the TDKLI approximation. Given an approximate
functional for the correlation part of A„,[@, ], the prin-
cipal advantage of the TDOPM and TDKLI schemes is
that the inclusion of time-dependent correlation effects

does not increase the numerical effort involved in the
exchange-only case.
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