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Predictions from Quantum Cosmology

Alexander Vilenkin*
Institut des Hautes Etudes Scientifiques, 35, route de Chartres, 91440 Bures sur -Yve-tte, France

(Received 11 July 1994)

The world view suggested by quantum cosmology is that inflating universes with all possible values
of the fundamental constants are spontaneously created out of nothing. I explore the consequences of
the assumption that we are a "typical" civilization living in this metauniverse. For a class of models
that do not exhibit "eternal" inflation, the most probable values of the constants correspond to very
flat inflaton potentials, thermalization, and baryogenesis at electroweak scale, structure formation by
topological defects, and an appreciable cosmological constant.
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Why do the constants of nature take the particular val-
ues that they are observed to have in our universe? It cer-
tainly appears that the constants have not been selected at
random. Assuming that the particle masses are bounded
by the Planck mass mp and the coupling constants are ~1,
one expects that a random selection would give all massesIp and all coupling s —1 . The cosmological constant
would then be A —mp and the corresponding vacuum
energy p —mp. In contrast, some of the particle masses
are more than 20 orders of magnitude below mp, and the
actual value of p is ~10 '~orn4. (I use the system of
units in which 6 = c = 1.)

It has been argued [1] that the values of the constants
are, to a large degree, determined by anthropic consider-
ations: These values should be consistent with the ex-
istence of conscious observers who can wonder about
them. If one assumes that the production of heavy ele-
ments in stars and their dispersement in supernova explo-
sions are essential for the evolution of life, then one finds
that this anthropic principle imposes surprisingly stringent
constraints on the electron, proton, and neutron masses
(m„m„, and I„), the W-boson mass miv, and the fine
structure constant e . An anthropic bound on the cosmo-
logical constant can be obtained by requiring that gravita-
tionally bound systems are formed before the universe is
dominated by the vacuum energy [2].

I should also mention the popular view that there
exists a unique logically consistent theory of everything
and that all constants can in principle be determined
from that theory. The problem, however, is that the
constants we observe depend not only on the fundamental
Lagrangian, but also on the vacuum state, which is likely
not to be unique. For example, in higher-dimensional
theories, like superstring theory, the constants in the four-
dimensional world depend on the way in which the extra
dimensions are compactified. Moreover, Coleman has
argued [3] that all constants appearing in sub-Planckian
physics become totally undetermined due to Planck-scale
wormholes connecting distant regions of spacetime.

Finally, it has been suggested that the explanation for
the values of some constants can be found in quantum

cosmology. The wave function of the universe gives a
probability distribution for the constants which can be
peaked at some particular values [4]. Wormhole effects
can also contribute an important factor to the probability
[5]. Smolin [6] has argued that new expanding regions
of the universe may be created as a result of gravitational
collapse due to quantum gravity effects. Assuming that
the constants in these "daughter" regions deviate slightly
from their values in the "mother" region, he conjectured
that the observed values of the constants are determined
by "natural selection" for the values that maximize the
production of black holes. Some problems with this
conjecture have been pointed out in Ref. [7].

In this Letter I would like to suggest a different
approach to determining the constants of nature. This
approach is not entirely new and has elements of both
anthropic principle and quantum cosmology. However, to
my knowledge, it has not been clearly formulated, and its
implications have not been systematically explored. My
approach is based on the picture of the universe suggested
by quantum cosmology and by the inflationary scenario.
In this picture, small closed universes spontaneously
nucleate out of nothing, where "nothing" refers to the
absence of not only matter, but also of space and time
[8]. All universes in this metauniverse are disconnected
from one another and generally have different values for
some of the constants. This variation may be due to
different compactification schemes, wormhole effects, etc.
We shall not adopt any particular hypothesis and keep an
open mind as to which constants can be varied and what
is the allowed range of their variation.

After nucleation, the universes enter a state of inAa-
tionary expansion. It is driven by the potential energy
of a scalar field p, while the field slowly "rolls down"
its potential V(p). When p reaches the steep portion of
the potential at some p —p. , its energy thermalizes, and
inflation is followed by the usual radiation-dominated ex-
pansion. The evolution of p is influenced by quantum
fluctuations, and as a result thermalization does not occur
simultaneously in different parts of the universe. In many
models it can be shown that at any time there are parts of
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the universe that are still inflating [9,10]. Such eternally
inflating universes have a beginning, but have no end.

We are one of the infinite number of civilizations living
in thermalized regions of the metauniverse. Although it
may be tempting to believe that our civilization is very
special, the history of cosmology demonstrates that the
assumption of being average is often a fruitful hypothesis.
I call this assumption the principle of mediocrity. We
shall see that, compared to the traditional point of view,
this principle gives a rather different perspective on what
is natural and what is not.

The principle of mediocrity suggests that we think
of ourselves as a civilization randomly picked in the
metauniverse. Denoting by a; the constants of nature that
can vary from one universe to another, we can write the
corresponding probability distribution as

d7(a) = Z 'w„„((n)3V(n)

Here, w„„,~(n) gdn; is the probability of nucleation for
an inflating universe with a given set of o. ; in the intervals
dn, , 3V(n) is the average number of civilizations in
such a universe (in its entire history) [11], and Z is a
normalization factor. We shall interpret (1) as an a priori
probability distribution for cv;.

The inflating part of the universe can be divided into a
quantum region, V(p) ~ V~, where the dynamics of the
inflaton field p is dominated by quantum fiuctuations, and
slow-roll region, V. ~ V(n) & V~, where the evolution is
essentially deterministic. [V. = V(p. ) corresponds to the
end of inflation. ] The values of V. and Vq are model
dependent. The infiationary expansion rate is given by
H = 8mV(p)/3mp and can be arbitrarily high if V(p) is
unbounded from above. In order to extend the validity
of the theory to V(p) —mp, one can include one-loop
matter corrections to Einstein's action [12]. This may be
adequate if the number N of matter fields is large, N » 1.
Then it can be shown [13) that the resulting equations
have no inflationary solutions for V(p) ) V,„—mp/N.
The inflationary expansion rate is therefore bounded from
above [14], H ( H „mp/~N. Smaller values of
H,„can be obtained in dilatonic and higher-dimensional
gravity models, or simply in models where V(p) is
bounded from above (e.g. , when p is a cyclic variable and
has a finite range). Here, we shall assume that, for one
reason or another, H is bounded by some H „. Eternal
inflation is possible if &mph ) &q.

Let us first assume that V „~Vq in the whole range
of variation of u;, so that inflation is finite. Very roughly,
we can write

3V(a) — V.(n) v„,(u), (2)
where V. is the volume of the universe at the end
of inflation [that is, the 3-volume of the hypersurface
V(p) = V.], and v, ;, is the average number of civiliza-
tions originating per unit volume V.. The maximum of
V. is achieved by maximizing the highest value of the

potential V,„at which inflation starts and minimizing
the slope of V(p) between V,„and V. ; the field p takes
longer to roll down for a flatter potential.

The cosmological literature abounds with remarks on the
"unnaturally" flat potentials required by inflationary sce-
narios. The slope of the potential is severely constrained
by the observed isotropy of the cosmic microwave back-
ground. With the principle of mediocrity, the situation is
reversed: flat is natural. Instead of asking why V(p) is so
flat, one should now ask why it is not flatter.

Let us now consider the role of other factors in
(1). The calculation of w„„,~(n) is a matter of some
controversy. The result depends on one's choice of
boundary conditions for the wave function of the universe
(see, e.g. , [8,15]). Here we shall adopt the tunneling
boundary condition. Then the semiclassical nucleation
probability is proportional to exp( —~5~), where S is
the Euclidean action of the corresponding instanton. In
Einstein's gravity, ~S~ = ~mp/H „, and thus w„„,&(n)
favors large values of V „and is not sensitive to other
parameters of the model [16].

An important role in constraining the values of n;
is played by the "human factor, " v, ;„(n). We do not
know what other forms of intelligent life are possible,
but the principle of mediocrity favors the hypothesis
that our form is the most common in the metauniverse.
The conditions required for life of our type to exist
[the low-energy physics based on the symmetry group
SU(3) X SU(2) X U(1), the existence of stars and plan-
ets, supernova explosions] may then fix, by order of mag-
nitude, the values of e, m„mz, and m~, as discussed in
Ref. [1]. Anthropic considerations also impose a bound
on the allowed flatness of the inflaton potential V(q&).
If the potential is too fiat, then the thermalization tem-
perature after inflation is too low for baryogenesis. The
lowest temperature at which baryogenesis can still occur
is set by the electroweak scale, T;„—m~. Hence, if
other constraints do not interfere, we expect the universe
to thermalize at T —mq. Specific constraints on V(p)
depend on the couplings of q to other fields and can be
easily obtained in specific models.

Superfiat potentials required by the principle of medi-
ocrity give rise to density fluctuations which are many
orders of magnitude below the strength needed for struc-
ture formation. This means that the observed structures
must have been seeded by some other mechanism. The
only alternative mechanism suggested so far is based on
topological defects: strings, global monopoles, and tex-
tures, which could be formed at a symmetry breaking
phase transition [17]. The required symmetry breaking
scale for the defects is g —10' GeV. With "natural" (in
the traditional sense) values of the couplings, the tran-
sition temperature is T, —g, which is much higher than
the thermalization temperature (T,h

—m~), and no defects
are formed after inflation. It is possible for the phase
transition to occur during inflation, but the resulting de-
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fects are inAated away, unless the transition is sufficiently
close to the end of inflation. To arrange this requires
some fine-tuning of the constants. However, the alter-
native is to have thermalization at a much higher temper-
ature and to cut down on the amount of inflation. Since
the dependence of the volume factor V„on the duration
of inflation is exponential, we expect that the gain in the
volume will more than compensate for the decrease in
"n-space" due to the fine-tuning. We note also that in
some supersymmetric models the critical temperature of
superheavy string formation can "naturally" be as low as
rnw [18].

The symmetry breaking scale g —10' GeV for the
defects is suggested by observations, but we have not
explained why this particular scale has been selected.
The value of g determines the amplitude of density
fluctuations, which in turn determines the time when
galaxies form, the galactic density, and the rate of
star formation in the galaxies. Since these parameters
certainly affect the chances for civilizations to develop,
it is quite possible that g is significantly constrained by
the anthropic factor p„.,(n).

If p„, is indeed sharply peaked at some value of g
and thus fixes the amplitude of density fluctuations and
the epoch of active galaxy formation, then an upper bound
on the cosmological constant can be obtained by requiring
that it does not disrupt galaxy formation until the end
of that epoch. The growth of density fluctuations in a
Oat universe with A ~ 0 effectively stops at a redshift
[19] 1 + z —(1 —OA) 't3, where AA = p„/p, and p, is
the critical density. Requiring that this happens at z ( 1

gives Az ~ 0.9. The actual value of A is likely to be
comparable to this upper bound. Negative values of A are
bounded by requiring that our part of the universe does not
recollapse while stars are still shining and new civilizations
are being formed. This gives a bound comparable to that
for positive A (by absolute value).

Let us now turn to the case of eternal inflation, V „)
Vq. The evolution of cp is then a stochastic process and
can be described by a distribution function p(y, t) which
satisfies a "diffusion equation ' with appropriate boundary
conditions at V(p) = V. and V(p) = V „[9,20—23].
In an eternally inflating universe, the volume V. of
the hypersurfaces V(p) = V. is infinite and has to be
regnlated. The simplest way to do this is to cut it off at
some time t = ~ and consider the asymptotic behavior as

The time variable t can be defined as the proper
time on the congruence of geodesics orthogonal to the
initial hypersurface at the "moment of nucleation. " Since
geodesics tend to diverge during inflation, this proper-
time gauge should be well defined. If p is normalized
to the total inflating volume, then in the limit t
we have [23] p = F(p) exp(dH, „t), where d(n) can be
interpreted [21] as the fractal dimension of the region
expanding at the highest rate H,„(n), 0 ( d(n) ( 3.
The asymptotic form of V„at large r is then

V.(n, r) = V(n) exp[d(n)H, „(n)r], (3)
and it is clear that in the limit ~ ~ the distribution
(1) selects the values of n; that maximize the product
d(n)H, „(n),

B(n) —= d(n)H, „(n) = max. (4)
Generically, a function attains its absolute maximum

at a single point. If this is so for B(n), then Eq. (4) is
sufficient to determine all constants of nature. However,
it is conceivable that the maximum of B(n) is degenerate,
so that (4) defines a surface in the space of n, . All values
not on this surface have a vanishing probability, and the
probability distribution on the surface is proportional to
w„„,&(n)V(n) p„,(n).

The functions B(n) and V(n) depend on the choice
of the time variable t which is used to implement the
cutoff. For example, if instead of the proper time we
chose t = V.(n, t), then by construction the factor V.
would be the same for all universes. Here, we shall keep
the proper time cutoff, which has a simple geometric and
physical meaning. It favors the universes producing the
largest number of civilizations per unit time by the clocks
of the comoving observers. The cutoff dependence of
the results is nonetheless an important issue and requires
further study [24].

The fractal dimension d(n) increases as the potential
V(p) becomes flatter [21,23], and thus the condition (4)
selects maximally Hat potentials with the highest value
of V „. In some models, maximization of B(n) may
drive the slope of V(p) to zero; then no reasonable
cosmology is obtained. The approach presented here can
be meaningful only if the maximum of B(n) corresponds
to a nontrivial potential V(p). If we assume in addition
that this maximum is degenerate and defines a surface
rather than a single point, then the probability maximum
on that surface is determined by the same considerations
as in the case of finite

inflation.

In particular, the
electroweak scale should not exceed the thermalization
temperature, since otherwise no baryons would be formed.
A more detailed discussion of d 7 (n) in the case of eternal
inflation will be given elsewhere.

Let us now summarize the "predictions" of the principle
of mediocrity. The preferred models have very Hat
inAaton potentials, thermalization and baryogenesis at
the electro weak scale, density fluctuations seeded by
topological defects, and a non-negligible AA [as long as
these features are consistent with one another and with the
constraint (4) in the case of eternal inflation].

After this work was completed, I learned about the
preprints by A. Albrecht [25] and by J. Garcia-Bellido
and A. Linde [26] which have some overlap with the
ideas presented here. I am grateful to Brandon Carter and
Alan Guth for discussions and to Thibault Damour for
his hospitality at I.H.E.S. where this work was completed.
This research was supported in part by the National
Science Foundation.
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H
Sm H 6

2V(q&) + 2
— H H.

3mp H() M2

Here, Ho —mp/~N, N is the number of matter fields
with masses m « H, and M can be adjusted to any value
by a finite renormalization of the quadratic in curvature
term in the gravitational Lagrangian. Physically reason-
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