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A Choatic Pulsating Star: The Case of R Scuti
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Observational data of the light curve of the variable star R Scuti are subjected to a powerful recently
developed nonlinear dynamics approach. This is the first time it is shown that the irregular pulsations
of a star are described by a chaotic dynamics with an embedding dimension of 4. The results are
relatively robust with respect to the presmoothing of the observational data, as well as to the parameters
of the method (such as the delay and sampling rate). This low dimension suggests that the complex
pulsational behavior is a result of the nonlinear interactions between just two vibrational modes.

PACS numbers: 97.10.Sj, 05.45.+b, 95.10.Fh, 97.30.Kn

Irregular stellar variability has fascinated observers for
a long time, but theorists have devoted very little atten-
tion to this phenomenon, perhaps for want of a suitable
mechanism. A recent numerical hydrodynamical survey
[1] of the pulsations of cepheid models of the W Virginis
type [2] has demonstrated that in a large domain of
masses, luminosities, and effective temperatures the com-
puted pulsations are irregular. This behavior is intrinsic
to the steliar model and has its origin in the existence of
a chaotic dynamics as evidenced by cascades of period
doublings that precede the chaotic behavior as one of the
model parameters is varied (for a review, cf. [3]). The
chaotic dynamics is triggered by a half-integer (5:2) reso-
nance of the excited fundamental mode with the stable
second overtone which explains why the behavior is so ro-
bust. Calculations show that the model pulsations become
increasingly irregular with increasing luminosity and bear
a strong resemblance to the higher luminosity cepheids (of
RV Tauri type such as R Sct).

However, the question whether the observed irregular
pulsations of these cepheids are also governed by a
chaotic dynamics, and what the dimension of such a
dynamics would be, has remained unanswered. In fact,
the searches for chaos in observational astronomical data
have been unsuccessful, in contrast to other disciplines
[4]. The reasons for the general frustration can be found
in the large observational errors, but also in the natural
and scheduling constraints that make the data acquisition
process less systematic than is desirable for most of the
sophisticated nonlinear dynamics techniques [5].

A "holy grail" of the nonlinear science community has
been the development of techniques to detect the existence
and find the characteristics of an intrinsic low-dimensional
nonlinear deterministic structure (whether multiperiodic
or chaotic), especially in the presence of contaminating
noise (for a review, cf. [5,6]). The determination of the
dimension of such a dynamics is of great theoretical
interest because it is related to the number of variables

with which the nonlinear structure can be captured,
and the demonstration of a small dimension implies the
feasibility of a search for a simple physical model of an
apparently very complicated phenomenon.

In this Letter we apply a recently developed technique
to the analysis of the (RV Tau-type) star R Scuti with
the help of the AAVSO observational data [7]. This
star displays unsteady pulsations with an approximate
"period" of 140 days and with irregularly alternating
deep and shallow minima, with intervals of reduced
overall amplitude. The observations have been made
visually by many amateur observers worldwide. There
is considerable scatter in the data as well as observational
gaps. The error in the magnitudes is found to have a
normal distribution (with a o. = 0.2), independent of the
magnitude. This is perhaps not so astonishing in view
of the logarithmic response of the eye, but it forces
us to work with the magnitude instead of the more
physical luminosity. We follow a standard astronomical
preparation procedure [8] that consists of first taking
2.5 day averages of the individual data points followed
by a cubic spline smoothing interpolation and a digital
low pass filtering. We discuss the effects of variations in
the smoothing techniques elsewhere [9,10]. The resultant
time sequence, [g(t„)), with a constant, one day separation
will be the object of our analysis. Figure 1 shows a
typical subsegment of the data set together with the
smoothed curve.

Of the whole set of AAVSO observations we have
chosen a recent 15 year section which (a) is recent and
of denser sampling and (b) is typical, i.e., has stages of
both large and small amplitudes that hopefully explore
the whole attractor. The smoothed 15 year set is shown
in Fig. 2 (top). On the right hand side is the amplitude
Fourier spectrum which is quite complicated, with over
30 peaks above the estimated observational noise level.
This is significant because on physical grounds the star
does not have so many observable 8 ( 3 eigenfrequencies
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FIG. 1. Magnitude of R Sct vs time; dots: individual observations, solid line: smoothed data.

(detectable with the whole disk observations). Further,
different sections of the data give rise to a different peak
structure albeit with a similar envelope [11], a sign that
the star is more complicated than multiperiodic, i.e., is
probably chaotic. An alternative, viz. a rapid evolution is
not supported by the data and is at odds with our current
understanding of stellar evolution.

The core of the analysis described in this Letter is a
recent global polynomial expansion technique [9,12,13].
Takens' embedding theorem [6] states that if the pulsation
is governed by a Aow, i.e., by a system of nonlinear
differential equations dY/dt = G(Y), where Y is the d
dimensional vector of the physical phase-space variables,
then there exists an embedding variable X which satisfies
a nonlinear equation (map) of the form X"+' = F[X"];
furthermore, an embedding dimension of at most 2d + 1

is required. The set of d, -dimensional vectors X" =

(g(4), g(4 —5), g(4 —2b, ), . . . , g(4 —(d, —1)A)) is
constructed from the observed scalar variable (g(4)) —=

g(Y(4)). This global map F is expanded up to a
certain order p with a set of polynomials P, (X), viz.
F(X) = gk, CkPk(X). The polynomials are constructed
to be orthonormal on the data set (natural measure).
Therefore, they are uniquely defined and there are no
arbitrary fitting parameters in the approach (besides the
time delay 6).

The procedure consists of constructing such nonlinear
maps F as a function of dimension d, and of determin-
ing the minimum d, which reproduces the observational

n+ Idata with an acceptable accuracy F, e.g. , F = g„!X,
F;[X"]!2 for component i = 1. The quantity F. com-
pares the "predicted" values to the actual values X"+'.
In a noise free situation no improvement should be pos-
sible once this minimum embedding dimension has been
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FlG. 2. Left: temporal variation of magnitude, right: amplitude Fourier spectrum (linear scale), r&p: R &«tt data. ««««d
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FIG. 3. Error norm F. as a function of embedding dimension
d, and order of polynomial p.

reached. According to Takens this d, thus represents an

upper limit on the dimension d of the underlying fiow.
Figure 3 shows a clear drop and leveling off suggesting

that perhaps d, = 4. This figure suggests that a polyno-
mial expansion of third or fourth order may be sufficient
to reproduce the essence of the attractor.

We now show that our 4D and fourth order polyno-
mial map actually captures the stellar dynamics. It is
well known that a chaotic map displays an extreme sen-
sitivity to initial conditions, i.e., even the slightest initial
difference gets amplified exponentially fast, and a point
by point comparison with the data is thus meaningless.
Furthermore, the R Sct data are too short to allow the
usual statistical tests (e.g. , [5]). Instead we have there-
fore verified that the derived nonlinear map F passes the
following crucial tests: First, with most arbitrary initial
conditions the map generates (synthetic) time sequences
that are stable, i.e., they neither blow up, nor do they
decay to a periodic cycle. Further, the synthetic signals
have a strikingly similar appearance to the R Sct light
curve, e.g. , the intermittent small amplitude features of
the original signal are reproduced, as well as the occur-
rence of irregularly alternating deep and shallow minima.
Two pieces of such a synthetic signal are displayed in
column 1 of Fig. 2. Second, and importantly, the syn-
thetic signals have a Fourier spectrum with a statistically
similar structure as the R Sct light curve (second column
in Fig. 2). Third, after a linear transformation to optimal
(Broomhead and King [5]) coordinates the similarity of
the light curve and the synthetic signals remains strong.
In contrast, the iteration of the second order (p = 2) 4D
map is unstable, and p = 3 yields a limit cycle with a
basic frequency of 0.00656cjd.

We need to address the question of the robustness
of the map. The nature of a time sequence generated
from even the simplest map, namely the logistic map
[6] displays an extreme sensitivity to the parameter of
the map because limit cycles and chaotic sequences
are intimately mingled. For more complicated maps or
Bows that lie in a higher-dimensional parameter space
the situation is even more complicated. Furthermore,

there can be crises points [6] in which a tiny change
in the parameters can totally alter the nature of the
signal. It should therefore be sufficient, for demonstrating
the presence of a chaotic attractor, that the map yields
synthetic signals of the same nature as the data in some
neighboring range of parameters Th. e polynomial map
we have derived necessarily has inaccuracies that are
caused by the truncation of the polynomial order p (or
possibly by nonpolynomial behavior). To ensure that
such inaccuracies do not affect our conclusions we have
thus determined the effects of small variations of the map,
by multiplying the nonlinear polynomial coefficients by
factors of the form 1 + e. Returning to the 4D, p = 3
map, when we increase e from 0 to 0.2 the limit cycle first
turns into a 2-torus, then into chaos with properties similar
to those of our 4D, p = 4 map. (It is perhaps noteworthy
that the two frequencies have a ratio of 2.4 which is
reminiscent of the 5:2 resonance which plays a role in
onset of chaos in the hydrodynamical models of 'W Vir
models [3].) The fact that the synthetic signal does not
perfectly match the appearance of the data is therefore not
astonishing, and is not even a serious drawback. That the
pulsation can be modeled by a 4D map is the important
conclusion.

Can we rule out a 3D map'? The answer is affirmative:
While the synthetic signal, generated with p = 3, is
chaotic it bears no resemblance to the data nor to
the Fourier transform, but is composed of complicated
oscillating bursts. With p = 4 the latter becomes periodic
with the same complicated structure. Finally, with p = 5
the synthetic signal turns into a simple almost sinusoidal
limit cycle with a frequency of 0.0142c/d. [It is worth
noting that such a limit cycle is not a fixed point of an
iterate of the map, i.e., x 0 F (x)]. None of these 3D
synthetic signals come close to resembling the data.

Although 5 is a free parameter there are some practical
constraints on it which can make it different from the op-
tirnal delay one might infer from information theoretical
considerations [5,6]. For large b. the map is very nonlin-
ear and it is necessary to go to a high polynomial order,
or worse, the map may not be accurately represented by a
polynomial. For small 5, on the other hand, the nonlinear
part of the map may get lost in the noise. We find that for
the R Sct data a delay of nine days is a good compromise
and the derived low embedding dimension is robust with
respect to 5 in a reasonable range of values.

The R Sct data set is too short to lend itself to
the calculation of the correlation dimension, but from
the iterated map we find a dimension of =3.1 which
confirms the chaotic (strange) nature of the attractor.
The Lyapunov exponents are found to be 1.9 && 10 ~,

0.1 X 10, —1.4 & 10, and —5.0 X 10, yielding a
Lyapunov dimension [6] of dL = 3.1. Both imply that the
phase-space dimension d ) 3. The false neighbor method
[14] (kindly performed by Dr. R. Brown) corroborates 4
as the embedding dimension.
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The 1D return map generated with our map shows a
great deal of structure. It is therefore not astonishing
that a 1D return map of the observational data yields an
unenlightening scatter diagram [11].

In contrast to a nonlinear map, more standard tech-
niques, for example, a Fourier sum of 30 optimally chosen
frequencies (cf. Fig. 2) barely generates a synthetic signal
of similar properties. While such a fit can serve as an
interpolation, when a synthetic signal is generated as a
continuation, the appearance is quite different from the
R Sct light curve; the Fourier amplitude spectrum is the
same, but does not have the proper phase relationships.
Standard maps such as the deterministic linear ARMA
schemes fall short of producing synthetic signals that are
both stable and have the same appearance as the data. On
the other hand, it is always possible to cook up stochas-
tic schemes that successfully model the data. However,
when our approach was tested on such an apparently simi-
lar signal, the polynomial map was unable to produce
a decent synthetic signal. Furthermore, it would take a
strong deus ex machina to cause disturbances of that size
in a star. In our opinion such stochastic models appear
ad hoc compared to a fourth order nonlinear map.

We conclude that the smoothed R Sct data are chaotic
and that they are well reproduced by a four-dimensional
map. In view of the high noise level in the observational
data the important question arises as to whether our results
carry over to the actual star. We think they do for
the following reasons: First, the main result, namely the
dimension, exhibits a certain robustness to the smoothing
process. Second, all other explanations appear contrived
in comparison to the simplicity of a 4D map. In support
we also note that a cursory analysis of another RV
Tau-type star, namely AC Her, similarly indicates the
presence of a chaotic attractor of the same low dimension,
this despite the substantially different appearance of the
pulsations.

That the irregular pulsations of a complicated system
such as a star should have such a simple underlying
dynamics is remarkable. After all, the pulsational behavior
involves an intricate interaction between pulsation and heat
liow [2]. In addition, models and observations indicate the
presence of very strong shock waves and mass loss. From

a theoretical point of view our results are thus exciting
because they suggest that the irregular pulsations of this
star can be modeled by a system of four coupled first
order ordinary differential equations. In other words, it
may be possib1e to understand this complicated behavior as
arising from the nonlinear coupling of just two vibrational
modes. Furthermore, this type of analysis puts constraints
on the modeling of these stars which would otherwise not
be available. But perhaps the most important potential
impact on astronomy is that it may convince observers that
useful information can be extracted from the observations
of irregular variable stars, and that these stars thus deserve
more attention than they have been getting.
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