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It is shown that the transformations of Einstein-Podolsky-Rosen states such as those used in
communication and cryptography schemes can be described as a hopping motion on a finite phase space
lattice associated with a finite Heisenberg group. Quantum mechanical Hamiltonians that generate the
hopping are shown to cause phase oscillations characterized by the number-theoretic Legendre symbol.
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The clever trick used in the Einstein-Podolsky-Rosen
(EPR) [1] argument is to circumvent the uncertainty
principle by getting information about a particle from
a measurement made on a partner with which it is
perfectly correlated. Two-particle states of this kind are
called EPR states or “completely entangled states,” and
their extraordinary properties have suggested possible
applications to communication and cryptography [2,3].
The fact that one can make use of the correlation to obtain
information about complementary observables suggests
that there is a sense in which the dynamics of a two-
particle EPR state is classical in spite of the underlying
quantum mechanical behavior of its constituent particles.
In this paper I am going to explain how this classical
behavior is generated and show that some surprising phase
alteration patterns accompany it that are associated with
number-theoretic quadratic residues.

Entangled states have the property that one can trans-
form a two-partner system by a unitary transformation ap-
plied to just one of the partners in such a way that an
observer who “acquires” both partners can ascertain what
transformation was performed. Moreover, no eavesdrop-
per can obtain information by interception of a partner
because it is coded into the quantum mechanical phase re-
lationship between them. Consider, for example, a system
of two spin-1/2 particles for which we can construct four
orthogonal EPR states

|4y =272 1, L2y — | LDl 1,2)},
1By =272 1, L.2) + | L. )| 1.2)},
IC) =27 1, DI 1,2) — | LD L2)},
IDy =27 2{| 1, DI 1,2) + | LI L 2)}. (1)

Observe that these states can be transformed into one
another by acting only on particle 2 and using only the
two unitary operators o and 7 given by

al1.2) =11.2), ol L,2) = -112),
1 1.2) = 1L2), T L2) =112, @)

together with their products. This gives us the four
transformations on particle 2: uy, uy, us,ugs = I, 0, 7,07.
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Thus suppose “Alice” prepares state |A) and sends
particle 2 to “Bob” who applies one of the four u,’s to
that particle. He returns the particle to her and, since she
now possesses both particles, she can determine which of
the four orthogonal states |A), |B), |C), |D) the two-particle
system is in by means of a generalized Stern-Gerlach
apparatus. Thus she can deduce which of the four choices
of operator Bob made.

Now let us examine the structure of the operators
u,: The two operators o and 7 used to construct them
involve multiplication by a root-of-unity phase (here *1)
and cycling the spin, respectively. The fact that repeated
application of the two operators gives rise to only four
states results from the fact that o and 7 generate the ray
representation of a four element group. The structure of
that group is very reminiscent of the group of phase space
translations in quantum mechnaics. To see this note the
similarity between

or = ¢ "r0 3)
and the coordinate and momentum translations:

eiaXei,BP — e—iaﬁeiﬁl’eiax . (4)

In both cases we have a Heisenberg group. In the latter
case it is the infinite Heisenberg group associated with the
translations of a continuum phase space with real-valued
coordinate and momentum, whereas in the former it is a
finite Heisenberg group associated with translations on the
finite two-dimensional lattice in which the “coordinates”
and “momenta” are in Z,, i.e., the field of integers mod(2).

Let us next examine the generalization to entangled
states of particles with higher spin. It will turn out
to simplify matters (without limiting our insight) if we
restrict the spin to be (p — 1)/2 where p is a prime
number. This is because, as we shall see, the relevant
Heisenberg group will involve the integers mod(p) which
form a field Z,. This makes it possible to perform any
necessary matrix multiplications and inversions in the
unencumbered way that we do with real numbers. Each
of the two particles in our entangled state will thus be
assumed to inhabit a Hilbert space of dimension p, and
the two-particle Hilbert space will be of dimension p2.
Our generalization now takes the following form: Let
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/>, j=0,1,...,p — 1, be a basis in HH, of particle 2.
Let the unitary matrices o, 7 of U, be defined by

T =1j+1,

w = e/, ®)
Then the required u,’s to be applied by Bob to particle

2 are the p? operators u( j), where j = (j, k) with j, k =
0,1,....,p — 1 and

alj) = w’lj),
mod(p),

u(j) = e imIkIp ik (6)
From the familiar character identity
p—1
Z e27rin/p = 8,0, (7)

n=0
where the Kronecker symbol is understood mod(p), one
obtains the orthogonality property:

Tr{u' (u(§0} = pojy or Tr{u(j)} = p8jo,  (8)
and in view of this (see Appendix A) the entangled states

they generate will be mutually orthogonal. The operators
also obey the Heisenberg group relation:

u(@uh = UG+ §), §x § =K =k ©)
so that we can think of the p? states as corresponding
to a p X p lattice phase space in which coordinate and
momentum are in the field Z, of integers mod(p). We
call this lattice £,.

The fact that the entangled states have a lattice phase
space structure suggests that we next consider the pos-
sibility of dynamically inducing an entangled state to
“hop” around on that lattice. Thus we seek a quantum
mechanical Hamiltonian that will cause the two particles
to evolve in such a way that at a discrete set of times
t =0,1,2,... the entangled state will be found on one of
the lattice sites.

The states of the lattice are generated by the actions of
the u, on a fiducial state, and so we need only consider
what happens to these operators when the two particles
evolve under some specified time evolution. If the time
evolution operators for the two partners are V,(z), V,(¢),
respectively, then it is shown in Appendix A that the u,
operators evolve according to

u, — Vou,V;. (10)

Note that the trace orthogonality of the u,’s is preserved
for any choice of V|, V, but to preserve the Heisenberg
group structure we must require V, = V; !. Thus the two
particles evolve as they would if they were antiparticles
of one another. The time evolution at the discrete
times ¢t = 0,1,... then produces a sequence of unitary
similarity transformations on the u,’s. However, this is
not sufficient to insure that the u,’s are transformed into
other u,’s, i.e., to insure that the states simply hop from
one site in £, to another. To achieve this we must have

Uu(HU) = u(j@)), r=0,1,2,..., (11

where we have put U = V, = vi!and j(2) is an orbit on
L,. This imposes a tight constraint on the form of U.
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For one sees from (9) that for any integer
u(j)" = u(nj), (12)
and hence, if one puts u(j’) = Uu(jU™!, it is easy to
check from (9) that for any integers n;, n, we must have
i X =01 X ja.
(13)

(niji + mja) = niji + naj's,

In other words, we must have
Uu(HU™" = u(M}j), (14)

in which M is a linear transformation with integer
coefficients mod( p) that leaves the cross product invariant
mod(p). Thus M is a member of the group SL,(Z,).

We have thus established that associated with the quan-
tum mechanical transformation U there must be a linear
transformation M on the finite two-dimensional lattice
L, of integers mod( p), and we note that SL,(Z,) is just
the L, analog of a symplectic (canonical) transformation.
In other words, for a sequence of times ¢ = 0,1,2,...
there will be a “classical orbit”

J— i) =M@0j (15)

on the two-dimensional phase space lattice of integers
mod( p) associated with the orbit of the quantum mechani-
cal state under the time evolution operator U(z).

An elegant relationship between the quantum evolution
described by U and the classical evolution described
by the corresponding M is obtained when we actually
determine the explicit form of U = U, that satisfies (14)
for various choices of M. One may guess this form
from our experience with X, P in quantum mechanics,
namely, that quadratic forms in X,P generate linear
transformations of the operators. By the completeness
of the u(j)’s over the p?-dimensional vector space of
p X p matrices, we know that Ux; can be expressed as
a linear combination of them. We are thus led to try
linear combinations in which the coefficients are phases
constructed by exponentiating quadratic forms jQj, in
which @ is a two-by-two matrix and the tilde indicates
a row vector. Indeed we find that for each M there will
be a two-by-two matrix Q » such that

U = D exp{(mi/2p)]Qumi} u(j),  (16)

i
or possibly a degenerate form of this in which the double
sum reduces to a simple sum.

A straightforward approach to the determination of the
relationship between Q 5 and M exploits the fact that
the group SL,(Z,) is generated [4] by p, y with

(D) 1) @

One readily verifies that the corresponding U, and U,
will be degenerate forms of (16). Specifically, making
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use of (7), one obtains a formula for any powers of the
generators:

p—1
Upn = > e ™M Py(j,0),
j=0

p—1
Upn = D ™ /P y(0, k),
m=1,2,.... =0 (18)
Thus one might, in principle, find a Un for any M by
decomposing it into a product of powers of p and y and
use (18). However, simpler and more instructive methods
are available as indicated in Appendix B.

Since our primary purpose here is to clarify the rela-
tionship between the quantum dynamics determined by
U and the associated classical motion on the lattice de-
termined by M, it will suffice to focus on the simplest
example, namely, the dynamical process obtained by iter-
ating one of the group generators (17). The corresponding
quadratic form gives us the lattice analog of free-particle
motion because the associated quadratic form is one that
behaves like the free-particle Hamiltonian P2. It will turn
out to simplify matters if we consider a sequence of even
numbers and examine

UQ@2t) = (U,)*, t=0,1,.... 19)
In quantum mechanics the solution of the Schrodinger
equation entails the explicit computation of the time
evolution operator. In the case of (19) this means that
we must explicity compute the right side for any choice of
t. Now we note that it follows from (13) that U,~ must
coincide with (U,)" up to a phase. Hence (19) can be
written
U@t) = VU0, , (20)
in which we have an explicit formula for U,> from (18)
with m = 2¢, and so “solving the Schrodinger equation”
reduces to determining the phase ¢/#®). As we shall now
see this phase turns out to be extraordinarily interesting.

Note first that from (8) taking traces on both sides of

(20) will give

e = pT'Tr(U,)*]. (21)
If one inserts the left side of (18) for U, (with m = 1),
there will be a product of sums indexed by ji, j2, ..., j2
containing u(j, + --- + ja;,0), which has zero trace un-

less the sum of the j’s is 0 mod(p). One can then use
(7) to pick out this term using a standard trick and obtain

TH(U,)¥] = D [F(n)]*, (22)
where

F(l’l) — Ze-—iﬂjz/pehrinj/p — S(_zp)ei'trnz/p,
J

S(p) = > e¥min/p, (23)

in which the second step results from completion of the
square. Thus

eV = p I [S(=2p)'S(p/1). (24)
The function S(x) is known as a Gaussian sum and
such sums are fundamental in the solution of quadratic

diophantine equations. We are fortunate that thanks to
Gauss (who is reputed to have worked for five years to
prove it) [5] we have a beautiful formula for S(p/¢) when
p is an odd prime, namely,

S(,,/,)z(i) (1‘—) , 25)
p 14

where the Legendre symbol is defined by

t) _ [+1ifzisasquare modp, 2%

p ) | —1ifzis not asquare modp . (26)
Now suppose that our U(z) is generated by a Hamiltonian.
If we add an arbitrary constant E to that Hamiltonian,
it will introduce an extra factor ¢ £’ in (24). Hence
the argument of the factor [S(—2p)]* can be “gauged”
away along with the ¢ independent factor in (24) which is
removed by changing the time origin. Thus up to gauge
we have established the extremely surprising fact that

e =1/p, @7

i.e., the time-evolving phase of the “free” EPR state
follows a pattern of +1’s and —1’s in a manner with
basic number-theoretic significance. One may observe
that, while the notion of “sign” in the usual sense does
not exist in the field Z,, we can give it meaning if, as
for real numbers, we define a positive number as one
that is the square of something while a negative number
is one that is not. Thus the Legendre symbol extends
the notion of sign to Z,. It can also be shown that for
p > 2 there are just as many squares (quadratic residues)
as nonsquares. Thus we have obtained the quite pleasing
result that the analog of free-particle motion in the EPR
lattice is characterized by a wave function with the Z,
analog of a sign alternating phase.

The computation of the Legendre symbol is facilitated
by a factorization law which reduces it to a product
of Legendre symbols whose upper members are the
prime factors of r. These in turn obey the celebrated
and profound Gaussian law of quadratic reciprocity [4]
relating g/p to p/q.

It is clear from the above and the discussion in
Appendix B that when we come to investigate and classify
more general lattice Hamiltonians we will encounter
generalized Gaussian sums (theta series) [4,5] and will
have to invoke the general theory of quadratic diophantine
equations. It thus appears that we have just scratched
the surface of fruitful connections between the lattice
dynamics of EPR states and one of the richest areas
of contemporary mathematics. For example, it will be
of utmost interest to ascertain the quantum mechanical
significance of the Gaussian law of quadratic reciprocity.

Appendix A.— An entangled state of two particles of
spin J = (N — 1)/2 has the property that a particle may
be found with equal likelihood in any state |x) but will be
found with certainty in state |x) if its partner is found

837



VOLUME 74, NUMBER 6

PHYSICAL REVIEW LETTERS

6 FEBRUARY 1995

in state |x)Y, where U is a one-one map on the N-
dimensional Hilbert space Hy of a particle. It can then
be shown [6] that the map U must be an antiunitary
transformation, i.e.,

U =u7, (28)

in which 7" may be an arbitrarily selected antiunitary
transformation (which we usually choose to be time
reversal) and u runs over the unitary transformations on a
particle. One may then establish that all of the entangled
states are expressible in the form

N
lwy = N2 |, 01, 2T (29)
j=1

and the antiunitarity of u7 enables one to establish
that this expression is independent of the choice of the
orthogonal basis |j) used. The fact that two-particle
Hilbert spaces can be labeled by one-particle operators
was first recognized by von Neumann [7] and extensively
studied by Herbut and Vujci¢ [8,9] who refer to the
operator u as the “correlation” operator.

It follows that the scalar product formula for entangled
states can be computed from the corresponding correlation
operators by

(ulvy = N~ 'Tr(utv). (30)

In the linear space of N by N matrices one can construct
a set of N? unitary matrices that are orthonormal in the
sense of this inner procuct and may be used as a basis.

If particles 1 and 2 are transformed by unitary operators
V1, Va2, respectively, one sees from the fact that the
expression in (29) is invariant to a change of basis that the
effect is the same as transforming the correlation operator
by

u— VouVy, where V* = Tv-IT1 3D

If V is a unitary time evolution operator associated with a
time-reversal invariant Hamiltonian, then one sees that

Vi) = V(). (32)

Note carefully that while an EPR basis spans the two-
particle Hilbert space, linear combinations of EPR states
are not in general EPR states, so that they themselves
form a Riemannian manifold—not a linear subspace-—
in the two-particle space. Thus one produces new EPR
states from old ones by multiplying u’s rather than by
adding them, i.e., from (29) one sees that vl|u) = |vu)
describes the transformation of an EPR state into another
by the action of the unitary operator v on particle 2. To
insure that successive untitary transformations keep us
within a set of N? orthogonal states we must therefore
find a finite group with a ray representation consisting
of N? trace-orthogonal matrices. For prime N one can
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show [10] that the Heisenberg groups we used are the
only possibility.
Appendix B.—Suppose that in (16) we put

2a b
QM - ( b 20) >
with integers a,b,c and with the restrictions on the
discriminant A = b2 — 4ac:

(i) A # 1(modp), (ii) A = 1(mod4),

i.e., b odd. Then it can be shown that @ 4, is related to
M by a Cayley transform:

_vQuy + 1 (0 1
movei i =) o

where the computations in (33) are in Z,. One sees from
(33) how the analog of the canonical structure of quantum
mechanics is expressed in the finite lattice phase space
of EPR states: If R is a unimodular matrix, one verifies
that R ~'» = »R so that (33) continues to hold under the
transformation
M- RIMR, Om — RONR. 34)

Thus each U producing a hopping of EPR states from
one lattice site to another will have a counterpart under
the canonical transformation R which, as one sees from
its relation to », is a finite symplectic transformation of
the lattice. Note that R preserves the discriminant and
therefore the two conditions used in deriving (33).
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