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Low-Lying Eigenstates of the One-Dimensional Heisenberg Ferromagnet
for any Magnetization and Momentum
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I present the exact dispersion relations for certain low-lying states of the one-dimensional Heisenberg
ferromagnet. These states are bound complexes of M overturned spins, and in fact are the states with
the lowest energy for given values of the total spin, z component of spin and momentum.

PACS numbers: 75.10.Jm, 03.65.Ge

Soon after the invention of quantum mechanics, Bloch
and Slater proposed a mechanism for ferromagnetism
based on a quantum mechanical Hamiltonian proposed
earlier by Heisenberg. In a classic paper [1] published
in 1931, Bethe studied the one-dimensional version of
this Heisenberg ferromagnet, presenting the solution in the
form of a guess —Bethe's ansatz —for the wave functions.
He then verified that these wave functions in fact do obey
the eigenvalue equation, and gave a counting scheme to
show that they were a complete set. Of great interest was
a set of low-lying states made up of plane waves with
complex wave vectors —the so-called bound states. For
bound states of small numbers of overturned spins, Bethe
gave the explicit dispersion relation. However, when the
number of overturned spins in a bound state is a finite
fraction of the total number of spins making up the sample,
then the situation is much more complicated. In particular,
the question of the stability of a bound state —and so
completeness —is subtle. They are precisely these states
that we will study. (Our conclusion is that Bethe s original
argument does not apply when the number of overturned
spins is a finite fraction of the total lattice size. )

We wish to investigate certain low-lying states of the
one-dimensional Heisenberg ferromagnet [2]. We take
the lattice to be a ring of N sites, so an index j will
be understood as modulo N. We will always write the
quantum states in a basis of eigenstates of o, where the
g direction is "up." An operator Pj I, permutes the spins
on sites j and k. With these definitions, the Hamiltonian is

iven as
N N

H = ——g cr~ . crj+( —1 = —g PJ~+) —1

j=l j=l
Clearly the absolute ground state is 9'o = 1, with ground
state energy Fo = 0.

The Hamiltonian commutes with the total spin operator,
and with the translation operator which translates by one
site. Thus, we can specify the states by their total spin,
the z component of spin —or, equivalently, M spins down,
N —M spins up—and the total momentum P, given
modulo 2~.

It is convenient to take twisted boundary conditions
[3,4], rather than the usual periodic boundary conditions.
These are defined as follows: Let the M down spins

be located at sites (xt, . . . , xM), so the wave function
for a state is then written as W(x~, . . . , xM), symmetric
in permutations of the coordinates. Then the twisted
boundary conditions are given as W(. . . , x, + N, . . .) =
e' 'It(. . . , x, , . . .). The parameter 4 is the magnitude of the
twist, and 4 = 0 mod2m. is the usual periodic boundary
condition. We can then treat 4 as a continuous parameter
for the wave function. If we increase 4 by 2~, the
physical problem is obviously the same, although a twisted
state will in general not be the same state. In particular,
translating a state by N, we see that e' = e' . Thus,
we speak of boosting the momentum by M4/N, and we
can then usefully think of momentum as a continuous
variable.

We obviously have in mind a lattice gas model, where
the N —M up spins are empty lattice sites or holes, and
M down spins are particles, with a density d = M/'N.
Particle-hole symmetry allows us to restrict the density
to d ~ 2. Then the twist is supplied to the charged
particles by means of a magnetic flux threading the ring-
the Bohm-Aharonov effect.

This ability to boost the momentum has the added
advantage of giving us a criterion for judging whether a
given M-particle state is a bound complex of M particles
acting as a single entity, or whether it is instead a coherent
beam of M particles. This in general is a difficult question
because we know that for a finite system a quantity like
energy is an analytic function of any analytic parameter of
the Hamiltonian, such as the coupling constant. Therefore,
even if we obtain a bound state of two particles as we
vary the coupling constant through a threshold value—
meaning the asymptotic momenta of the particles become
complex —there is no singularity in the energy to signal
such a qualitative change. But, if we boost the momentum
of an M-particle bound state through 2m by a twist of
2vrN/M, then the energy returns to its initial value. This
is to be contrasted with the case of a coherent beam of
M particles, when the momentum of each particle must be
boosted through 2~—for a change in total momentum
of 2mM —before the energy returns to its initial value.
This is accomplished by a twist of 2~N. Thus, an M-
particle state is a bound complex of M particles if the
energy of the state is periodic in the twist with a period of
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2vrN/M. This is no more than the familiar observation in

superconductors that the periodicity is a half-flux quantum
because the excitations are Cooper pairs.

As first discovered by Bethe, the energy eigenfunctions
are given by

M

%(. . . , x, , . . .) = PA(P) exp i P x, pp,
P j=l

with xl ( . . . ( xM. The summation is over all M! per-
mutations (P 1, . . . , PM / The energy and momentum are
givenby P = g p, mod2m, and F. = 2+[1 —cosp]. The
amplitudes A(P) are related one to another by the two-
body phase shifts. (For M ) N/2, eigenstates are deter-
mined by particle-hole symmetry. ) Then, upon imposing
the twisted boundary conditions, we obtain M coupled tran-
scendental equations for the asymptotic momenta (p~),

1 + e'~~+~'~ —2e'~

1 + e'~~+~'~ —2e'~'
p/

the product being over all the M —1 p's other than p. This
is well known, and serves as our starting point.

We now make a change of variable, from p's
to n's, given by e'" = (2a. + I)/(2a. —1), or

p = 2i arccot—h(2n) —= —if(a). Some care is needed
in specifying the branch structure of f(n). We make the

1 1

branch cut from —
2 to 2, and choose the branch so that

If(n) is real for a real, and lnl ) 2. The equations for
the p's then become

2n + 1;g, ' —' n n + 1

2n —1 "; n —n' —1

Taking the logarithm of these equations, we obtain

Nf(/x) = 2~iI(n) + i4 + g f((a —n')/2).
~/

The numbers 1(/x) are integers from log(1). We shall
refer to the n's as the roots, to distinguish them from
the p's.

The energy as a function of the n's becomes E =
P f'(a), f'(a) being the derivative of f(n), a single valued
function. The momentum then is P = i P f(n), m—od27r.
The solutions will all have p's in complex conjugate
pairs, written as (p)' = [p), implying 1a)* = [—n). We
take 1(a) = 0, throughout. For 4 = 0, the n's will be
real, symmetric, and

l
6n l

~ 1. Thus, l
n l

) ~, with the

exception of (i) n = 0, for M odd; (ii) n = ~ 2, M even.
For 4 = 0, this gives the momentum of the state to be
P = ~, and hence for general 4 the momentum of the
state to be P = M4/N + 7r.

The case when W ~, M finite has been previously
discussed [1,4]. We see that if N ~, then e'~" ~ ~ or
0, according to whether Im(p) ( or ) 0. Thus, we see
that An = integer, and so a J

=j —(M + 1)/2 —ia, j =
1, . . . , M, with a real. These are the so-called bound
states, or M strings, first found by Bethe. The energy
is evaluated as F. = 4M/(M2 + 4a2). The momentum is
evaluated as e'P = —(M —2ia)/(M + 2ia), so P = 7r-
2arctan(2a/M). Thus, the momentum ranges between

0 and 2~. Eliminating a between the equations for F.
and I' gives the dispersion relation for the M string E =
2[1 —cos(P)]/M. Note that when N ~ ~ it requires 4 ~
~ to boost the momentum by a finite amount. These
expressions will be useful when M, N ~ ~, d = M/N
fixed. For fixed M and large but finite N, the differences
n j+ 1 n j deviate from 1 by a positive term exponentially
small in N.

For M, N ~, we assume as before that the roots n
distribute themselves along a curve in the complex n plane,
symmetric about the imaginary axis. The n's cannot be
closer to one another than lAnl = 1, a distance fixed by
the branch points of f(b.n/2) Thus . the end points will be
of order N, and we rescale by choosing a new variable x =
n/N We. then assume that the x's distribute themselves
along the curve in the complex x plane with a root density
p(x), so that N p (x) ldx l is the number of x's in dx. Finally,
we make the ansatz that in the central portion the x's are
distributed with a maximum density p(x) = 1, along a
straight curve 0 perpendicular to the imaginary axis, as
for the finite M strings. We call these condensed roots
the core, and they make a contribution to the energy and
momentum identical to that of an M string. On the other
hand, the remaining x s in the tails of the distribution have
a density p(x) ~ 1, and lie along a more general curve I .
Thus we can write fn+r p(x) ldxl = M/N = d.

If we examine the function f(n) under the change
of variable, we see f(Nx) = 2arccoth(2Nx) ~ 1/Nx, as
N ~. Inserting this expression into the transcendental
equations, and replacing the summations by integrals
along the curve II + I" with the density p(x), and
assuming a core of condensed roots, we obtain the
following singular integral equation:

1—=i++2
x

d
x —

y

p(y) Idyl

x —
y

x E I.

p(y) ldy I xEy.
The contours are shown in Fig. 1(a). It is in this form that
we will solve the equation.

Let us now derive expressions for the auxiliary quanti-
ties, starting with the particle density. We have

M/N=d=B, 2+
L

p(x) ldxl

817

Let ~B1 + iB2 be the end points of 0, while ~A1 + iA2

are the end points of 0 + I . To reduce the number
of parameters in the problem, let us once more change
variables, moving the end points of 0 to ~ 1 by x =
Blx' + iB2. This new scaled variable we will also call x
and, in fact, will continue to use p for the original density
considered as a function of the new scaled variable. With
the definitions a = A&/B~, b = A2/B&, c = B2/B&, the-
singular integral equation becomes

ie '
dy+

2B](x lc) 2 —i x
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Let us rewrite the integral equation as

-a+ib && 1C a+ib

p(y)Idyl
x —

y

o-(y) idyl i4
2

, xCy,

-a+ib

(a)

(b)

1C

z

a+ib

where co' combines the contour tp = [—1, 1] and the
point ic. We now seek the field h in the form
h(x) = r(x) f, @(y)dy/(x —y). By deforming the
contour A into the contour A', as shown in Fig. 1(b), we
see that to have a solution to our original equation we
must choose @(x) = o.(x)/r(x), with f, @(z)dz = 0, andf, x@(x)dx = i 4 /2 Tr.anslating back, the condition on
the zeroth moment of P gives Bi, while the condition on
the first moment of P gives 4. There is the one further
constraint that Re fz h(x) dx = 0; this is the difficult one,
and it will fix the contour y.

It is convenient to define g(xla, b) —= f, dy/r(y) (x-
y) with moments g„(a, b) —= f, y' dy/r(y), related by
g(xla, b) = P™og„(a, b)/x" '. All of these expressions
can be explicitly given in terms of elliptic integrals.
We then summarize our results: Bi = 1/2 r(ic)gp,
C' = 2[tgl + cgo], h(x) = r(x) [go/(x —tc) —g(x)].

We can derive expressions for the particle density d =
M/N and the energy e = NE that do not require us to
integrate over the contour y, since this is particularly
difficult to determine. These are

FIG. 1. Contours (a) and deformed contours (b) in the x
plane, as explained in the text; we have yI + y2 = y and
Al + A2 = A.

1

2
g2 Ebgt + C(C b)gp

2gog(l + c ) [(c —b) + a ]

Thus, there are 2B~N condensed roots in the core, with
the remaining roots in the tails. The energy of the core
is identical to that of a 2B~N string, while the energy of a
single root in the tails becomes —1/(Nx); so, combining
the two contributions, we have for the energy

= 1 2 p(x) ldxlNE=e=—
B, 1+ c' ~ (x —ic)'

We shall treat 4 as a parameter of the equation, so the
momentum can be written as

P —rr = M4/N = —2 arctan(c) —i
p(x) ldxl

X lc
Again, the first term is from the core, while the second is
from the tails.

Our integral equation is of a classic form, and can be
solved in full generality [5]. We first enclose the con-
tour y with a counterclockwise contour A as in Fig. 1(a).
The density p can then be found from a "field" h(x)
by p(x) ldxl = [h(x+) —h(x )]dx /~2i D—efine the fun. c-
tion r(x) = ((x —1) [(x —ib)2 —a2])'i2, placing branch
cuts on y, and choosing the branch of r so that r(0) =
Ja' + b', and r(x) ~ —x' as lxl ~ ~.

e = 2gor(ic) [r(ic)g'(ic) + r'(ic)g(ic)] —gor(ic)r" (ic) .

We save the details for a longer publication.
If the twist 4 is zero, then the equations simplify

considerably, since we can conclude by symme-
try that c = 0 and b = 0, and thus the curve y of
the roots lies entirely on the real axis. Then, we
find that g(x) = 2/axII(1/x, 1/a), gp = 2aK(1/a),
gi = 2a/3[(2a + 1)K(1/a) —2(a + 1)E(1/a)]. [The
functions K(k), E(k), and II(n, k) are the complete elliptic
integral of the first, second, and third kinds. ] Then
r(x) = [(x —1) (x —a2)]'i2, so r(0) = a, r'(0) = 0,
and r"(0) = —(a + 1/a). We then use the previous ex-
pressions to find the actual range of the core of condensed
roots Bi to be Bi = 1/4K(1/a). The field h is given as

h(x) = 2[(x —1) (x —a )]'i

&& [K(1/a) —II(1/x, 1/a)]/ax .

Finally, the density of the roots p along the real axis, in
terms of the scaled variable x, is

1, lxl ~1,
p(x) = - 0, lxl ~a,

2[(x —1) (a —x )]'i [II(1/x, 1/a) —K(1/a)]/vrlxl, 1 ~ lxl ~ a.
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density of p's x 1/Bi2
--I

dm0

0 x/B, -1 -1/2 0 1/2 1 ipB, /N
FIG. 2. The density of the roots as a function of the scaled
variable, for typical values of particle density.

FIG. 3. The density of the asymptotic momenta, which occur
in Bethe's wave function, for selected values of the particle
density.

In Fig. 2 we show p(x) for selected values of a = At/B, .
Note the sharp edges to the distribution. The original p's
are distributed along the imaginary axis with a momentum
density as shown in Fig. 3, for a = 2, corresponding to
d = 0.370 51.. . , and for a = oo with d = —.Note that the

1

"core" of n's with uniform density has become the "tails"
of the p distribution.

Previous expressions give the particle density and en-

ergy

d = I/2 + a[E(1/a)/K(1/a) —I]/2,
s = 4K(I /a) [2E(1/a) —(1 —1/a )It (I /a)] .

This then gives the energy e parametrically as a function
of the density d. The point a ~ ~ is a singular point,
corresponding to the distribution of roots being unbounded.
At this point d = 2, so the lattice gas is half filled, and e =

The boundary of the core is B] = ~77. The density
of roots in the tails becomes p(x) = 1 —(x —I)'/ /~x~,
~x~ ~ 1. Completing the energy versus density curve by

1 1

symmetry, we find for d, near 2, e = ~ [I + 8(d —
2) +

.J. This then gives the spin susceptibility at the point
d = ~. (We note that this calculation, giving a weak
paramagnetism for momentum ~, is in direct contradiction
to the string hypothesis. )

If the twist 4 is not zero, then the roots are no
longer confined to the real axis. Since we have
solved this problem in all generality, we can de-
termine the full dispersion relation for the bound
states, but this requires extensive numerical analy-
sis, so I save this for a longer paper. Physically, we
are most interested in dispersion curves of e versus

or momentum P = ~ + d4, for fixed density d,
corresponding to an M complex, M = dN. In the limit as
a, b, c ~, the physical quantities d, 4, ~ approach limit-
ing values, leading to end points for the dispersion curves.
What happens at these points on the boundary curve? It
is at precisely these points that the end points ~a + id of

the contour y extend to infinity, so that the roots become
arbitrarily large. This leads to a finite density for the
p's at the origin. We saw this for 4 = 0. But p's at
the origin play no point in the dynamics of the problem,
make no contribution to the energy or momentum, and
in fact are the source of the large degeneracies for large
values of total spin, reflecting rotational invariance of our
Hamiltonian.

If we examine the momentum ~ states for the periodic
Heisenberg ferromagnet when 4 = 0, the M-particle states
we have studied have z component of spin S, given by
25, = N —2M, but also they have a total spin quantum
number 5 = 5, ; they are the so-called "maximum weight"
states. However, there are N —2M other states degenerate
with this one; what is their nature? These other states
have the same energy and momentum as our M-complex
state, but contain M' ) M particles, so the additional
M' —M particles have p = 0. The tails of the M complex
imbedded within the M' state do not extend to infinity, and
so do not feed particles in and out of the p = 0 reservoir.
This makes the two components dynamically independent,
and so the M' complex with ~S, ~

( S is composite, and
this is reflected in the fact that the energy as a function of
4 has a period of 27r N rather than 2' N/M.
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