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Violation of Self-Duality for Topological Solitons due to Soliton-Soliton Interaction
on a Cylindrical Geometry
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We study classical Heisenberg spins on an infinite elastic cylinder. In the continuum limit the
Hamiltonian of the system is given by the nonlinear o. model. We investigate the periodic, cylindrically
symmetric solution of the sine-Gordon equation (the Euler-Lagrange equation for this Hamiltonian).
The solution does not satisfy the self-dual equations of Bogomol'nyi [Sov. J. Nucl. Phys. 24, 449
(1976)] which give the minimum energy configuration in each homotopy class. This leads to a novel
geometric effect: periodic shrinking of the cylinder.

PACS numbers: 75.10.Hk, 03.65.Sq, 75.80.+q

The interplay of topology and geometry is becom-
ing increasingly prevalent in condensed matter systems
as we move to an era of low-dimensional, artificially
structured, and nanoscale materials. Here, we consider
classical Heisenberg-coupled spins on an infinite elastic
cylinder. In the continuum limit, classical one- and two-
dimensional static Heisenberg (ferromagnetic and anti-
ferromagnetic) spins are described by a nonlinear o.
model [1—4]. First, we consider a rigid cylinder (i.e.,
a cylinder with constant radius po); in this case, a so-
lution of the sine-Gordon equation (the Euler-Lagrange
equation for this Hamiltonian) is given by a nontriv-
ial spin distribution (soliton). This one-soliton solu-
tion satisfies Bogomol'nyi's self-dual equations [5]. The
Bogomol'nyi's equations represent a necessary condition
to attain the absolute minimum of the energy in each ho-
motopy class. Therefore the one-soliton solution realizes
the minimum of the magnetic energy in the first homo-
topy class.

All solutions of the self-dual equations satisfy the sine-
Gordon equation but not vice versa. Indeed, we find
that, due to the soliton-soliton interaction, the multisoliton
solution of the sine-Gordon equation does not satisfy
the self-dual equations, and therefore does not reach the
minimum energy (per soliton) in each homotopy class
[1]. Thus a variation in the geometry of the cylinder
can lead to a lower energy. We find that, for a cylinder
with periodic shrinking, the increase of elastic energy is
more than compensated by the gain in magnetic energy.
Here we note the analogy with the Peierls instability
in low-dimensional, interacting electron-phonon systems,
although the origin of periodic distortion is quite different.
Physically relevant examples include magnetically coated
cylindrical thin films or cylinders made from magnetic
alloys as discussed below.

The nonlinear 0- model for isotropic spin-spin coupling,
which is the continuum classical limit of the Heisenberg

Hamiltonian for ferromagnets or antiferromagnets [1—4],
is given by

H=J JVni' dS,
cylinder

with n = (cosg, sing costi, sing sin@), and J is the
coupling energy between the neighboring spins. We will
work in cylindrical coordinates (p,x,p). First, we will
adopt homogeneous boundary conditions. Thus we will
have different classes of topologically nontrivial spin
distributions [i.e., g = g(x)] on the infinite cylinder [1,6].

In this Letter, we restrict ourselves only to solutions
with cylindrical symmetry, which will be sufficient for
our purposes. This means that O and 4 will satisfy
the following conditions: 4 = p and Bg jr)cp = 0. The
Hamiltonian (1) then becomes'"

("„)'+"", d . p)
After variation of the Hamiltonian, the Euler-Lagrange
equation 6H = 0 leads to

d2g(x) 1
sin2O . (3)

dx 2po
The solutions of this sine-Gordon equation (3) are soli-
tons. A solution for a single spin twist is given by the
expression

H = 2mppJ

O = 2arctan exp— (4)
po

which has the following energy relative to the ground state
(parallel spins):

Hl = Svr J.
H] is the minimum energy level in the first homotopy
class and is independent of po. The solutions correspond-
ing to the absolute minimum energy in each homotopy
class also satisfy the self-duality equations

po B.-O = ~ sinO B,4 and B,O = ~ po sinO B.4.
(5)
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For the general case 0 = 0(x, p) and &5 = 4(x, p),
these equations (5) are obtained using the technique
employed by Belavin and Polyakov [1],and Bogomol'nyi
[5]. Using the obvious expressions

sin 0
6 O~ 6~4 + ~sin064

)
we obtain the following inequality:

H= J A podxdp ~2J sin 0 d 0 d+ = 8rr J!Q! .

The right hand side of the inequality is just the single
soliton energy times the winding number of the solution,

Q, and does not depend on the geometry of the support.
In the case of a cylindrically symmetric solution Eqs. (5)
reduce to

pob 0 = ~ sinO, (7)
and the single spin twist soliton 0 = 2arctan exp(x/po)
satisfies Eq. (7).

Next, we turn to the periodic solution of the sine-
Gordon equation [7). Note that the Bogomol*nyi argu-
ment can be applied on an interval between any two points
on the cylinder where 0 varies from zero to n~ and thus
covers the sphere S2 n times. Therefore, the self-dual
equations (7) are still valid for this interval and any func-
tion that satisfies them would give the minimum energy
for this interval. The periodic solution of the sine-Gordon
equation (3) can also be obtained directly using a Poisson
sum [8]. It is given by the following expression:

x '7T

0 = arcsin sn, k + —. (8)(kpo' ) 2
'

The period of this solution is d = 4pokK(k), where k is
the modulus of the Jacobi elliptic function sn, and K(k)
is the complete elliptic integral of the first kind. In the
limit k 1 the period d ~ [limi iK(k) ~] and we
recover the single twist soliton [Eq. (4)].

The periodic solution [Eq. (8)] does not reach the
minimum energy per soliton Hj. This stems from the fact
that the periodic solution [Eq. (8)] does not satisfy the
self-duality equations (7). The exact magnetic energy per

soliton (or the energy density per half period, d/2), since
0(~d/4) = 0[mod7r], reads

SmJ k' K(k)
(9)

where k' is the complementary modulus (k'2 = 1
—k )

and E(k) is the complete elliptic integral of the second
kind. In the dilute limit, i.e., k 1, k' 0, and E(k)
1, we expand the exact solution (9) in powers of k', and
find that the energy per soliton is given by

I /2 (
H = 87rJ + J = SvrJ 1+ 4exp — . (10)

kpp 2po)
The energy per soliton is higher than the minimum of the
energy associated with a single topological soliton: there
is an exponentially decaying repulsive interaction energy
between two solitons [7,9]. In the single twist soliton
limit (d ~ ~ and k' ~ 0) the term k' /kpo vanishes and
we recover the energy H~ of the single twist soliton. The
periodic soliton solution satifies the relation

I /2

po(B, O) = sin 0 + (1 1)

Equation (11) represents a modified "equipartition"
relation between "kinetic" po(0, 0) and "potential"
sin 0/po energy. For a multisoliton solution, in addition
to the potential energy, there is an interaction energy
term: k' /pok . In the limit of a single twist soliton the
interaction term goes to zero and the equipartition holds.
The fact that the self-dual equations are not satisfied
implies that we can minimize the magnetic energy by an
elastic deformation of the cylinder. This possibility arises
from the fact that, due to soliton-soliton interaction, the
width of the lattice soliton (kpo) is smaller than po. In
the case of a single twist soliton, the width of the soliton
(4) appears naturally to be po (the characteristic length in
the problem) [6].

If we relax the constraint p = po and allow p = p(x),
i.e., we allow elastic deformations of the cylinder, the
magnetic part of the Hamiltonian (the nonlinear o- model)

!

becomes

Hmagn
(&3+) sin 0 2 (BCO) sin20

,+,(0,@)'+, +, (Oq, g)' p 1 + (a,p)' dx d&&, (12)

to which we must add an elastic part, which is physically
modeled by the following Hamiltonian density:

I
+ —,(p —po) (13)

4 dx ) po
where g and ~' are elastic constants of the cylinder
for deformation along the axial and radial directions,
respectively. The modified self-dual equations for the
magnetic part now read

sinO(x)O@P = ~ OP(x),
p(x)

1+ (~u)'

sin 0 (x) Oq, O (x)
v'I + (O.p)' p

When considering cylindrically symmetric solutions,
these equations reduce to

sinO(x) p

Ql + (6 p)'
Physically this implies that given a spin distribution 0(x)
one can uniquely determine p(x) which would minimize
the magnetic part of the Hamiltonian and vice versa. We
do not exactly solve the highly nonlinear equation (14),
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+ &—
k2pp

but rather show that with an appropriate choice for p = p(x) we can minimize the global Hamiltonian H, s„+,~. We
make the following cylindrically symmetric, periodic ansatz for p and 0:

x x
p = pp

—eppcn, k
~

and (0, 4) = arcsinsn, k
~

+ —,p(kpp' ) (kpp' ) 2
'

where cn is the Jacobi elliptic function, cosine amplitude. The periodic magnetic soliton solution and the accompanying
periodic pinch of the elastic cylinder are schematically depicted in Fig. 1. Assuming that the quantities J/Xpo and

J/X pp are small compared to unity, we expand the Hamiltonian density up to third order in e:

, &x
pgi + p' ~„=J 2pocn'l, k

~

+ + epp —+ X' cn, k —e H —e Hp —O(e ),(kpo' ) k'po I, k' (kpo' )
where H and Hp are positive functions.

If we choose e = Jk' /2[X + y'k ]pp, then the total
energy for the elastic case is smaller than that for the
rigid one. The ansatz for 0 does not correspond to
the exact spin distribution on the periodically deformed
cylinder which reaches the minimum energy for that
given geometry because we have chosen p = po in the
ansatz for 0. This particular ansatz corresponds to a
higher energy of the magnetic soliton. Nevertheless, even
with this ansatz, we can lower the total energy, that
is, H, ~„„,~ H„;s;d. In the case k 1 (k' 0), e 0.
Here for a single twist soliton no elastic perturbation of
the support lowers the magnetic energy [6]. [The one
soliton solution, Eq. (4), satisfies the self-duality equation
for the rigid cylinder, Eq. (7).]

In conclusion, we have considered the classical
Heisenberg model on an infinite cylinder and found that
a periodic topological spin soliton induces a periodic
pinch of the cylinder. This is a consequence of the
violation of the self-duality equations in contrast with
the single soliton case [6]. A pinch can be induced for
the single soliton case by introducing spin anisotropy [6].
However, for the periodic case violation of self-duality
results from interaction between the solitons. An alter-
native perspective is that satisfying self-duality amounts
to eliminating interaction energy at the cost of elastic
deformation. This effect should be observable, with

Pp

~~ttti~-
n

p(x)
X

Wt tt~iW~

8 (x)

FIG. 1. Cylindrically symmetric magnetic soliton lattice solu-
tion and periodic pinch on an elastic cylinder.

use of ultrasonic techniques, in cylindrically wrapped
thin films of magnetic materials, specifically layered 2D
Heisenberg magnets such as (C„H2„+tNH3)qMX4 and
[NH3(CHq)NH3]MX4 for n ~ 16, where M = Cr, Mn,
Fe, Cu, Cd and X = Cl, Br [10]. Other examples
include K2CuF4, Ca2Mn04, Rb2FeF4, etc. [10], and
magnetic Langmuir-Blodgett films of manganese stearate
Mn(C ~s H3502)2 [11]. Interestingly, a stable, finite ampli-
tude peristaltic state (periodic shrinking) of tubular fluid
membranes was recently observed [12], although for a
different physical reason.
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