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Bethe or Bethe-like Lattice Calculations Are More Reliable Than Conventional
Mean-Field Calculations
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We demonstrate that the behavior on Bethe or Bethe-like lattices are qualitatively correct even when
conventional mean-field theories fail. We also give a new and direct method for calculating the bulk
free energy cu& for any model on a recursive lattice.

PACS numbers: 75.10.—b, 05.50.+q

There are two types of mean-field approximations
in use. In the conventional type, as formalized by
Landau [1], one introduces an order parameter, but
correlations between fluctuations at different sites are
neglected. However, the lattice geometry is not distorted.
In the other type, the lattice is approximated by a (Cayley)
tree [2], but the resulting problem is solved exactly,
including correlations except that they are weak. (A
Cayley tree ~, Fig. 1, possesses a surface with a nonzero
density of sites, even if g is infinitely large. The Bethe
lattice is the infinite "interior" of the infinite tree and
has no surface. ) While the behavior in the interior of
~ is similar to that predicted by conventional mean-field
theories in many cases, we shall demonstrate here that this
is not true in general. On the other hand, the behavior on
the entire tree can be strange and very different from those
on regular lattices [3]. This is due to a finite surface site
density on ~.

Conventional mean-field theories are not always trust-
worthy. According to Netz and Berker [4], the failure in
the case of a triangular antiferromagnet Ising model is due
to a violation of the hard-spin condition S = 1 which is
critical for incorporating frustration [5]. They also fail
in gauge theories [6] by violating Wegner-Elitzur theorem
[7], presumable because gauge symmetries are no longer
intact due to lack of correlations. Since the calculations
on a tree or any other recursive structure are done exactly,
whether frustrations or gauge symmetries are present or
not, we may ask: "Are the predictions on a Bethe lattice
or a similar recursive structure more reliable in general?"

We consider frustrations, gauge symmetries, etc. , as
part of a general scenario. We shall demonstrate that the
answer is affirmative. Therefore, in order to make such
calculations comp/etc, we shall also provide a direct and
elegant method of computing the (bulk) free energy tott
in the interior. This free energy must be insensitive to a
wide variety of surface conditions, which is what happens
on regular lattices. The knowledge of ~~ is critical for
locating phase transitions in case of multiple solutions
to the equation of state (EOS) and for determining the
equilibrium state.

The calculation on a tree is done recursively. It is a
standard and well-known [3] method. Therefore, we will

merely sketch it below and refer the reader to Ref. [8]
for more details. The tree is divided into generations [8],
m = 0 being the origin and m = M being the surface; the
tree with the center at I = 0 and the surface at I = M is
denoted by goM. Let q denote the coordination number.
On each site is a spin S (not necessarily Ising) and r
denotes the set of nearest-neighbor (nn) r = q

—1 spins
on (m + 1)st generation. Let Z (S) denote the restricted
partition function (PF) obtained by summing over all spins
on higher generations that lie between S and the surface.
The recurrence relation (RR) between Z and Z +~ is

Z (S) = Tr W(S, r) Z +1(T),

where W(S, r) denotes the Boltzmann weight due to inter-
actions between S and ~ and between v. and external fields.
Tr denotes the trace over spin states of all T E ~. Using
(1) recursively, we obtain Zo(S), the restricted PF for one
of the q bonds meeting at the origin (Fig. 1). Hence, the
total PF is

Zo, M = TrW(S) Zo(S),

FIG. l. A portion of a Cayley tree of coordination q = 3,
with branches SOM and subbranches SI M. The cactus shown
by light lines is obtained by connecting nn bonds.
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for the tree ~o M. Here, W(5) denotes the Boltzmann
weight for the interaction between S and external fields,
Tr denotes the trace over spin states of S, and the product
is over the q bonds at the origin. Obviously, Zo M depends
on the initial or surface condition ZM(5). This procedure
gives the free energy co per bond for the entire tree ~0 M,
even as M ~ ~, and is exact.

It is known [3] that cu gives rise to unusual behavior
due to surface sites. In particular, it depends on surface
conditions. On the other hand, we demand that the bulk
free energy ~~ per bond must be independent of a wide
class of surface conditions. The difference cu —cu& yields
the surface contribution ~s to the free energy and contains
the entire effect of the surface. For realistic lattices, cps

vanishes in the thermodynamic limit and co = cu&. This
does not happen for trees and, therefore, ~ and co~ are
usually different, with cu surface dependent and cua surface
independent.

To obtain ~~, we must get rid of the surface contribu-
tion which is not trivial. The procedure for ferromagnetic
Ising model is described by Baxter [9]: One integrates
the EOS with respect to the field to obtain the free en-
ergy. One also makes use of the following homogeneity
assumption: b = q/2 for the ratio of bonds to site in the
interior, even though b = 1 for an infinite tree. An al-
ternative approach is to calculate the entropy and the en-

ergy in terms of an order parameter [10], use b = q/2,
and minimize the free energy with respect to the order pa-
rameter. However, the homogeneity assumption has been
questioned by Eggarter [3]. Also, as shown by Bowman
and Levin [11],using b = q/2 yields unphysical results for
the spin-glass problem. There are other drawbacks of the
above two approaches: (i) EOS may not be known for all
fields; (ii) EOS may not be easily integrable; (iii) the order
parameter may not be known, etc.

We describe a new and direct approach to calculate
co& which neither requires the knowledge of the order
parameter nor the integration. Further, no homogeneity
assumption is made. It, nevertheless, comes out as a
consequence of our procedure. The method is general and
applicable to any system with any surface condition and
is valid for all recursive lattices. The generality of our
method makes it very useful and important. Our method
reproduces the free energy in cases where it is known by
other methods. This includes the Ising model discussed
by Baxter. In cases where the free energy is not known
by other methods, our method allows for its evaluation.
These include polymers among others.

Consider a tree ~0M with the origin at m = 0 and the
surface at m = M. The tree is obtained by "hooking" q
different branches 80M at the origin (Fig. 1). Each SOM
can be divided into r = q

—1 subbranches 8& M that are
connected by a bond to a site on m = 1 generation. The
difference 6 between the number of bonds on q 80M
branches and rq 8~ M branches is the q bonds meeting
at the origin: 6 = q. Now, consider the union ~& M of r
different trees ~& M, each formed by hooking q different
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subbranches 81 M. Let Zo M and Zl M, i = 1, 2, . . . , r,(i)

denote the PF's of ~0 I and each of p ~ M, respectively.
Then, as M

S = cga + PE —HsM, (4)

where E, Ms are the equilibrium values.
We now turn to various examples.
(A) Ising model with nn interactions. The reduced-

Hamiltonian A = pE = KQS;5, + HQS,—. Let u =
e~ and v = e0. We consider the model on the tree

roe = Lim(1/6) lnZDM —P inZI I (3)
i=1

gives the bulk free energy per bond at the origin, and
can be calculated for any model (Ising, Potts, gauge,
polymers, etc.) whether pure or random, provided there
is a fixed point (FP) or a fixed-point distribution function
of the EOS at the origin. The procedure can be carried
out on any recursive lattice. Since the FP is insensitive to
a wide class of surface conditions, the resulting bulk free
energy in (3) is also independent of this class.

From Fig. 1, we also note that the ~~0M and the union

p& I also differ by two sites only as can be easily checked.
Hence, qadi& is also equal to twice the bulk free energy
per site. In other words, b = 6/2 = q/2, as expected. It
should also be evident that one can also compare ~o
with a proper union ~& of qr ' different trees ~1,
with k ~. Here, ~I, denotes a tree with the origin
at m = k and the surface M = ~. Then, a subtraction
similar to (3) divided by qr" ' gives cue per bond for a
macroscopic and homogeneous interior of yo, which is
the Bethe lattice. What we have shown is that one can
take k = 1 also, which makes computation much simpler,
especially when randomness is present. However, we are
interested only in pure systems here.

By a proper choice of ZM(S) at the surface, one can
make cu per bond obtained from (2) to be identical to
au~, see example (A) below. However, this makes the
surface contribution to be temperature dependent. In
that case, care must be exercised in calculating quantities
like entropy which requires temperature derivatives [11].
Consider, for example, an Ising model and write ZM(5) =
exp( —Peq + HqS) at each surface site. The PF is

Z — PEs g Q(E M ) PE+HsMs

where Eq = Nqeq (Nq being the number of surface sites)
and Hq are surface energy and field determined by ZM(S),
E and M& are the energy and surface magnetization in a
given configuration, and A is the number of configura-
tions for a given E and Ms. Usual thermodynamic ar-
guments show that the "free energy" 5 —pE + HqMq,
5 = InA(E, Mq), must be maximized as a function of E
and Ms to yield co&. Therefore, the equilibrium state must
be stable. Furthermore, since 0 ) 1, S ~ 0. Thus, co~
must satisfy all the requirements of equilibrium thermo-
dynamics. The simplest way to obtain S is to perform the
Legendre transform:
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in Fig. 1 with arbitrary q. We set Z (1) = 8 x and
Z (—1) = 8 From (1), we find that the RR's are

8 = 8",f(x /]), x = g(x +/)/f(x +/),

where g(x) = uvx' + 1/uv, f(x) = g(x) with u ~ 1/u.
The RR for x is also called the EOS. The PF at the
origin is ZpM = Bpy(xp) with y(x) = vxt + 1/v, and the
magnetization pp at the origin is (vxp —1/v)/y(xp). The
free energy is

cvs ——(1/q) inl Bpy(xp)/ [Biy(xi)]"
I (6)

As M ~ and K)0, we obtain xo=x~ =x,
a FP for the RR of x, and cv ~ reduced to
coa = ln f (x)/[y(x)t~q '~«. A little bit of algebra
shows that this is b = q/2 times the free energy per site
given by Baxter [9]. (Note that our x is the inverse of x
used by Baxter. )

By expressing Bo recursively in terms of BM, it is
easy to show that when x~ = FPx of the EOS, ~ = ~&
provided Bm = 1/y(x). Thus, it is not sufficient to set
xM = FPx, to ensure cu = ~~, one must also choose BM

appropriately. This makes ZM(S) temperature dependent.
The above choice of BM ensures that go M itself can be
thought of as a part of a larger tree goM, M' ) M, and
that the free energy of the portion of the tree outside of
goM is zero. This is because this outside portion can be
thought of as giving rise to a large number of trees ~M M

and the PF for a tree QM M is ZM M = BMy = 1, see (2).
Hence, the free energy for this tree is zero.

(8) Frustration. For E(0,—one can so'lve the Ising
model above by making the substitution 5 —S on
alternate generations. Since there is no frustration on the
tree (Fig. 1), the problem is of no interest. To ensure the
presence of frustration, we consider the "cactus" shown
in Fig. 2, where each site has six neighbors (as on a
triangular lattice) and the three spins on each triangular
plaquette interact pairwise. We consider H = 0. The
frustration is inherent and cannot be removed. Let
Z (S) = 8 x s+' 2 be the restricted PF of a spin S on

a triangle. We find that (u = e ~):

with f(x) = (x4 + 2x2)u + 1/u3, g(x) = x f(1/x). The
RR for x always has x = 1 = x + I as a FP solution
and corresponds to a zero magnetization: p, p

= (xp

I)/(xp + 1) = 0.
We now study the stable state at absolute zero (T = 0)

to see if there is a phase transition. For a given spin state
S = 1 (or —1) at m, the two spins on the same triangle at
m + 1 are either (i) both S = —1 (or + 1) or (ii) opposite
to each other. Both have identical energies but the state
(ii) has more entropy; therefore, we expect this to yield the
stable state. The magnetization in the state (i) alternates
between generations (x = 1/x +~), while in the state (ii)
is zero everywhere: x = x + &

= 1. Thus, we do not
expect any phase transition, even at T = 0.

To confirm this, we set x~ = 1/xp in the RR for xp.
For u ~ IX, xp —u, and is different from xp = 1. This
suggests a possible phase transition. To investigate this,
we must compare the free energies. This example also
shows why knowing ~~ is essential. The free energy per
plaquette is cued

= (3) lnz, z = Bpy(xp)/[B&y(x&)] since1 3 3

there are 12 plaquettes coming in at m = 1 and we need
only three plaquettes to meet at m = 0. Here, y(x) =
x3 + l. For xp = 1/x~ = 1, z —(3u/2), while for xp =
I/x& —u4, z —u3. Thus, xp = 1 is the equilibrium
state even at T = 0. There is no phase transition when
frustrations are present.

(C) 1sing gauge model. —We consider a structure,
Fig. 3, on which gauge symmetry is intact. The four
spins at the corners of each plaquette have a coupling
E55'5"5"', K ) 0. There are two kinds of plaquettes,
drawn by thick and thin bonds. The thick plaquette
at the origin (m = 0) has two thin plaquettes on each
of the four sides. Each of these eight thin plaquettes
are connected to a thick plaquette at m = 1 along the
"outer" side. Each of these thick plaquettes are now
connected with six thin plaquettes on three sides only and

I

Q

--k.
fll=1

FIG. 2. A cactus on which frustration cannot be removed.
FIG. 3. A recursive lattice on which gauge symmetry is
present.
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so on. Since (m + 1)-generation sites are connected with
m-generation sites pairwise, we construct Z„,(S, S') for
each pair. From symmetry, Z (1, 1) = Z (—1, —1) = B
and Z (1, —1) = Z„,(—1, 1) = B x„.Because of these
symmetries, the magnetization is ahvays zero. This is
consistent with the Wegner-Elitzur theorem [7], according
to which the magnetization must be identically zero. The
RR's are

= 2B ~,f(x, ), x = g(x +()/f(x ~, ),
where f(x) = u + xz(I + 2/a) + x4(2 + u) + x6 =
x6g(1/x) and u = e2 . The PF Zp = Bpy(xp) with

y(x) = 2~u[1 + 2x (1 + 2/u) + x ]. The free en-

ergy co& per plaquette is to& = (1/11) In[Zp(xp)/Z) (x))],
with x = xo = x] as the FP of the EOS, i.e., of x
RR. The solution xo = xI = 1 is always a FP. To
see if there are other FP's of the EQS, we focus on
u ~ ~. Here, x ~ u and x ~ 1/u are two other so-
lutions. The free energy tott(I) = K + (1/11) ln2 and

tott(u) = catt(1/u) = K + (3/11) ln2 in this limit. Hence,
x = u or x = 1/u is the equilibrium state as u ~ ~ and a
phase transition from x = 1 to either of these states must
occur at some finite u.

(D) Potts model We b.—riefly discuss this model in

the absence of any field. The reduced Hamiltonian is
= K g 6 with sum over nn spins; o. = 0, 1, 2, . . . , s

is an s + 1 state Potts spin and K ~ 0. We consider
the tree in Fig. 1 with q = 3, and set Z (0) = B x,„,
Z (1) = Z (2) = . . = Z„(s) = B„„and u = expK. The
RR's are

Bm = B'+if(xm+I) ~ xm g( mx+ )/1f(xm+I) ~

with f(x) = x2 + u + s —1 and g(x) = ux2 + s. The
PF Zp = Bpy(xp), y(x) = x3 + s. The free energy per
bond is catt = (3) ln f (x)/y, where x is a FP of the x
RR, which has x = 1 as always a solution. The other two
solutions are given by x2 —(u —1)x + s = 0. It is easy
to show that there is a first order transition for s ) 1 from

to x = x~ = p = g ~ at u = u~ = 1 + p + p
1

The free energy catt(x = 1) = tott(x = x,) = (3) ln(1 +
p + p2 + p~)~/(s + 1). This is consistent with the con-
clusion in Ref. [10].

For s = 1, x, = 1 and the transition becomes continu-
ous at u, = 3. For s ~ 1, the situation changes. In par-
ticular, for s = 0, there are always three solutions x = 0,
x = 1, and x = u —1. However, x = 0 has unbounded
free energy and must be discarded as unphysical ~ The
other two solutions have identica/ free energy cv = 1nu.
Only if one applies a magnetic field H along o- = 0 state
one finds that, for u ~ 2, x = u —1 has a higher free
energy than that for x = 1, i.e., there is a phase transi-
tion at u = u, = 2, H = 0 with x = u —1 as H 0+
for u ) u, . However, at H = 0, this state has the same
free energy as x = 1. Presumably, this unusual behavior
of the Potts model for s = 0 is responsible for making
percolation so different from usual thermal transitions.

(F) Polymers. We consider the sim—plest branched
polymer problem with H as the end-point activity, K as the
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bond activity, and w as the trifunctional activity. (As w

0, we obtain linear polymers. ) The problem is solved [8]
on a cactus (Fig. 2), where only two triangles meet at a site,
by relating it to a general Ising model on the tree in Fig. 1,
q = 3. However, the Ising spins are now on bonds rather
than on sites in Fig. 1. Thus, these spins form a cactus
shown by thin lines in Fig. 1. A polymer bond on the
original tree is said to be present if the corresponding Ising
spin is in the 5 = 1 state; otherwise, the bond it absent; see
Ref. [8] for more details. The RR's are similar to those in

example (D) except that f(x) = I + 2H~Kx + Kx2 and

g(x) = ~K(H + 2~Kx + wKx ). The PF Zo = Boy(x),
y(x) = x + 1. Thus, the free energy per bond is given by

(3) ln f2(x)/(1 + x ), where x is the FP of the EOS. The
same free energy is obtained by integrating the equation of
state as shown elsewhere [12]. We can similarly calculate
the free energy for self-avoiding manifolds [13] on a
recursive lattice. We will not do that here.

In summary, we have shown that calculations on Bethe
or Bethe-like lattices are more reliable than conventional
mean-field calculations are. We have also given an
elegant and direct method for calculating the bulk free
energy at the FP of the RR. This free energy must satisfy
all the requirements of equilibrium thermodynamics.

The advantage of Bethe or similar recursive lattice
should be apparent. By a proper choice of these lattices,
it is possible to satisfy frustrations, gauge symmetries,
etc. , which are usually lost in conventional mean-field
calculations, because of the lack of correlations. These
correlations are present on Bethe lattices, even though
very weak and ensure that we obtain realistic results.
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