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Low Frequency Magneto-optical Properties of Josephson-Coupled Superconductors
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The low temperature transverse dielectric function is found for Josephson-coupled layered
superconductors for polarization of an electric field perpendicular to the layers in the presence of a
dc magnetic field oriented parallel and perpendicular to the layers. The plasma edge lays well below
the superconducting gap in highly anisotropic systems and it is reduced to zero in strong parallel fields
due to the overlap of nonlinear regions of Josephson vortices. In strong perpendicular fields the plasma
edge is also reduced due to displacements of pancake vortices from straight lines caused by pinning
centers. Corresponding characteristic fields for plasma edge reduction are found.

e, (to) = ep 1
CO

C
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where cu„ is the relaxation rate.
In the following we show that in Josephson-coupled

superconductors (Bi- and Tl-based systems and organic
layered superconductors) the plasma edge to, in Eq. (1)
at low temperatures is determined by interlayer Josephson
coupling (co2 is proportional to the Josephson interlayer
critical current density J,' ) and thus may be strongly
reduced by the dc magnetic field applied parallel [7,8]
or perpendicular [9] to the layers. We find that Hp =
C&p/ys is the characteristic field for this effect in parallel
fields; s is the interlayer spacing. For the perpendicular

PACS numbers: 74.60.Ge

It was shown recently that the collective plasma mode
may lay well below the superconducting gap in highly
anisotropic superconductors for orientation of the electric
field E perpendicular to the layers (along c axis) [1—5].
The plasma frequency for E ~~ ab is quite large (=1 eV)
for high-T, superconductors. In contrast, the frequency
of the plasma mode for E ~~ c with a momentum along
the c axis, co,. = c/A, ~op = c/A, by~ep, may be very
low because it is inversely proportional to the anisotropy
parameter y. Here A, b and A, are the London penetration
lengths for currents along the a-b plane and c axis,
respectively; ep is the high frequency dielectric constant
for the electric field along the c axis. In Bi-2:2:1:2
with y in the range 300—1000 the plasma frequency cu,
should lay in the range 10—30 cm ', well below the
superconducting gap 5 = 300 cm

The measurements of optical reflectivity performed
by Tamasaku, Nakamura, and Uchida [6] for E ~~ c in
Lal, Sr Cu04 show almost complete reflection at low
temperatures in the frequency range below 20—50 cm
This result was explained by Tachiki, Koyama, and
Takahashi [2] as originating from the dependence of the
transverse dielectric function for E ~~ c on the low lying
plasma frequency co,

field the characteristic magnetic field BD which affects
both J~') and co, strongly depends on the pinning, and
we express the decoupling field BD in terms of the
critical current density along the layers, J,b. We find

(c)

that for Bi-2:2:1:2 both fields Ho and BD lay in the
interval =1 —3 T, and this system is the best candidate
for observing magneto-optical effects.

We note that the decrease of the plasma edge in the
longitudinal dielectric function et(co) for parallel magnetic
field was described in [4]. The behavior of et(co) in
the magnetic field may be studied by measurements of
reAectivity on the superconductor in a waveguide, but not
in optical measurements where the transverse dielectric
function is important. Thus in the following we extend
the results obtained in [4] to the optical properties which
are sensitive to the transverse dielectric function.

We choose the coordinate system in such a way that
the c axis of the crystal coincides with the z axis, light
propagates along the x axis and alternating field, and F, is
along the z axis. The applied dc magnetic field is along
the y axis for orientation parallel to the layers and along
the z axis for perpendicular orientation.

The Maxwell equations read

~z
Bx c Bt

'

BBy

Bx

Ez
X sing&, „+i(r, t) + —. (2)

pc
The first term in the square brackets describes the Joseph-
son interlayer current, Jp = c@p/8m A2s is the Joseph-
son critical current density, f„„+&(z)= 1 if ns ( z (
(n + 1)s and 0 otherwise, and coordinates of layers are
z = n, s and r = x, y. We denote by p„„+l the gauge-
invariant phase difference between layers n and n + 1; it
includes the part induced by the applied dc field B and an-
other part induced by the field E,(t). The second term in
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the square brackets describes the current of quasiparticles
in the context of the resistively shunted junction model
[10],and cp„~ p, '. Note that concentration of quasipar-
ticles tends to zero as T 0 due to the superconducting
gap. Thus, p, ' 0 at T 0, and reAectivity at frequen-
cies below the plasma edge strongly increase below T, ,
especially at low temperatures (see also [5]).

The phase difference obeys the Josephson relation:

Ay„„+,(r, t) 2es rz & nn+i & (3)

where (&,(r))„,+i is the average electric field between
layers n and n + 1 at coordinate r. In the following we
assume that the electric field changes slowly in z direction
and we replace (E,(r))„„+iby F., (r, z, t).

We consider the linear response of a superconductor to
the electromagnetic field E, (t). We express p„„+i(r, t)
as the sum of a time-independent part p, „+,(r), which is(p)

due to supercurrent induced by the dc field B and small ac

part p„„+i(r,t), which obeys Eq. (3). Then in Eq. (2) we(1)

expand in p„„+i(r,t) and use the Fourier transformation(&)

for the time variable t. Finally, with the help of Eqs. (2)
and (3) we get the equation for the electric field:

CO+
~ Et(r, z, cp) E (r~, z, to) = 0,

Bx c
(4)

2 2IV cPtt pz+] + AJ $ sin Pn+1, n+2 + sill cP~

—(2 + s /A, b) sing„, ~i] = 0, (6)

where AJ = ys is the Josephson length and V = 8/Br
For the parallel field, solutions of this equation that are
periodic in x and n should be found, with the area of
the unit cell ap = 4p/B For the perpen. dicular field,
the positions of pancake vortices r„„(t labels vortices in

layer n) determine the positions of singularities for the

phase difference p„„+i(r) according to the condition(p)

(V', V'y —V'yV' )p„„~i(r) = +[6(r —r„„)
—6 (r —r„+i,)] .

where the coordinate-dependent dielectric function is

Cd Ep
2

(o) l
e, (r, z, co) = ep

& P f„„~i(z)cosp„,~i(r) +
M co pc.

(5)
Equations (4) and (5) describe propagation of an elec-
tromagnetic wave with frequency ~ in a media with a
coordinate-dependent dielectric function. This function is
determined by the phase differences between layers in the
presence of the applied dc magnetic field. In the Meissner

state we get p„,+i = 0 and e, (tp) is given by Eq. (1). In(o)

a mixed state p, „+i (r) becomes nonzero and the dielec-(p)

tric function depends on the vortex lattice.
The phase difference p„,+i(r) is determined [8,9] by

(p)

(p) s (x/a)
l (x/a)' + (sn/l)' (8)

For magnetic fields B ) 0.001 T and frequencies ~ in the
range 0.01—50 cm ', the wavelength of the light is large
compared with the intervortex distances a and l. Thus
we can average e, (x, z, or) over coordinates, replacing
cos p, „+~(x) by its average value over the unit cell (with(o)

area 9al/8 in the limit of large y). The main contribution
comes from the region where the phase difference is given
by Eq. (8). Finally we get Eq. (1) with cp, . replaced by

B Hp
cp,. (B) = cp, 1 —— ln

8 Hp B (9)

In the limit of strong fields, B » Hp, the intervortex
distance along the x axis, a = 4p/sB, becomes much
smaller than AJ, and nonlinear regions overlap. The
vortex lattice in this limit is simple: vortices fill all

interlayer spacings; the intervortex distance along the
x axis is a = 4p/sB. Vortices still form a triangular
lattice, because, in the neighboring interlayer spacings,
the positions of the vortices are shifted by a/2 (see [8]).
The phase difference was found in [8] using perturbation
theory with respect to the small parameter a /AJ:

B «Hp.

2mxp„.„(x) = + ~n—
2a „, 2 trx

(10)

Averaging cosy„„+~, we get Eq. (1) with cu, replaced by

~2Hp
B = Mq

mB
B » Hp.

In this case the positions of pancake vortices should be
obtained first, then p„„+~(r) may be found by solving

(p)

Eq. (6) with boundary condition (7).
We consider first the effect of the dc field BJ e. The

structure of the lattice formed by Josephson vortices
in weak fields B « Hp is very similar to that of the
Abrikosov vortices in anisotropic superconductors [8,11].
Centers of vortices form a triangular lattice. They form
rows along the x axis where the distance between centers
is a. ls is the distance between these rows along the z

axis; l is an integer part of a/s2~3y. The parameters a, I
are determined by the condition that magnetic flux is 4p
per vortex. The difference with the standard Abrikosov
lattice is that the center of each Josephson vortex is
positioned between the layers (say, n and n + I), and
thus the normal core is absent. Instead, there is a region
of length AJ along the x axis around the center of a
vortex inbetween the layers n and n + 1 where interlayer
current density is of the order Jp and the phase difference

p„„+i(x) differs significantly from 2~m where m is an(o)

integer. In this region the nonlinear character of the
(p)

Josephson current is important, and here cos p„„+~(x)
deviates significantly from unity. Far away from the
vortex positioned at x = 0, n = 0 we can use the linear
approximation for Eq. (6). Here we get
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Fp(n, r„) =—

We see that the plasma edge decreases linearly with a field
at small B and vanishes ~B ' as the field increases above
Hp. For Bi-2:2:1:2with s = 1S.6 A we get Hp = 1 —3 T
and for La~,.Sr Cu04 with y = 20 we estimate Hp =
50 T. A preliminary result of the reAectivity experiment
using a single crystal of La& 9Srp ~Cu04 clearly shows that
the plasma edge shifts to low frequency when an external
field is applied parallel to layers as we predicted [12].

In a perpendicular field, pancake vortices are arranged
along straight lines r(p) and these lines form a triangular
lattice if pinning is absent. For this lattice p, „+&(r) = 0
as follows from Eq. (7). Randomly positioned pinning
centers cause displacements of pancake vortices from
straight lines [we consider here only the temperatures
well below the irreversibility line T;„(B) and ignore

(p)fluctuations]. In this case we replace coscp„„+& in Eq. (5)
(p)

by its value averaged over disorder, (cosy„,+~). The
following formalism is close to that presented in [9]
and [13]. To define positions of pancakes we assume
that pinning is weak and that displacements of pancake
vortices caused by pinning, u„= r„—r(p), are small.
We find u„, taking into account the balance of pinning
and elastic restoring forces.

The pinning force acting on a pancake at position r„ is

Bp(r —r„)drU, r

277 l kyx —k yD(k, q) =
2a k2 + 2AJ (1 —cosq) + A

—2 (17)

Here x (y) are the unit vectors along the x (y) axis.
According to Eqs. (16) and (17) the phase difference
depends only on the transverse component of distortions.

Using Eqs. (12)—(17) we obtain

(p) t
Pn, n+1

ap k, q, v

d K(I —e'~) p (K)
e, (q, k)

K —
2

k Dqk

X exp[i(K —k) r~ 1 + iqn], (18)

We neglect in c44 the contribution from the Josephson
coupling, assuming B « Coy /A, b.

Knowing displacements of pancakes, we can find the
phase difference by solving Eqs. (6) and (7). For that we
use a linear approximation replacing sing„, +~ by p„,+&

in Eq. (6). In this approach we increase three-dimensional
effects, which tend to diminish the phase difference. Thus
we underestimate the effect of magnetic field on J(.') and
co, . Expanding over displacements u„we find

p„„+~(r) = ao pe '~" (1 —e'~)D(k, q)u(q, k), (16)
k,q

where D(k, q) is given by

u(q, k) = ao g u„, exp(ikr, + iqn) .
n, v

(14)

The momentum k is in the a-b plane and we assume a cir-
cular Brillouin zone of radius $47r/ao for summation over
k. q is the momentum for the discrete variable n, 0 ~
q ~ 2' and Q = 2(1 —cosq)/s~. The flux lattice shear
modulus (per vortex unit length) is c66 = 4O/(8~A, q) .
The tilt modulus is

B+p
4'(1 + A2k2 + A, ba~)

e,' / a,'g' &+ 4 ln 1+
327r2A bg2 ( 4~ j

Here U„(r) is the random pinning potential in the layer
n, and p(r) is the form factor of a pancake vortex. We
suppose U„(r) is the Gaussian, with correlation function
(U, (r)U (r')) = yUB(r —r')6„, where the parameter
yU characterizes disorder. We use p(r) = se,b/(r +
g,q), where g,b is the superconducting correlation length
in the a-b plane. The pinning force determines transverse
displacements which are important in the following:

ku(q, k) Fp;t(q, k)
u, (q, k) = u(q, k) — ' k =

k2 c66k2 + c44(q, k)Q2 '

F~(q, k) = Q F„[n, r~, ~] exp[iqn + ikr~ 1] . (13)
tl, V

Here we denote by u(q, k) the Fourier components of
displacements:

where we introduced the Fourier transforms of the form
factor p(K) and pinning potential U(q, K). Averaging
over disorder we get (cosy„„+&) = exp( —S), where S =
(p, „+&)/2 is given by

g (1 —cosq)p (G + k)
aO t-,k, q

x IG— k) D(q, k) (19)

g p'-(G)G = 7rao. —
G

(21)

Here G are reciprocal vectors of the vortex lattice. Note
that for a perpendicular field cu, may be expressed in
terms of the effective interlayer critical current density
J~"~ because both depend on

(cosign,

n + 1) [9]:
2 2

co, (B) = Jo (cosy„„~i) = J,.' (B) . (20)
877 CS ( ) 87T CS

&p+'p ep4p
Our goal is to estimate the field B~ above which the

Josephson coupling is strongly suppressed due to pancake
vortices and, correspondingly, the plasma edge becomes
reduced. We do not account for the renormalization of y
in the tilt modulus c44, Eq. (15), and in AJ = ys and A, =
yA t„Eq. (17), which would lead to a stronger effect of
pancake vortices on the Josephson coupling and plasma
edge for fields above BD (see [9]). To calculate S(B) we
approximate p(G + k) = p(G) and replace summation
over G by integration:
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The main contribution to S comes from small q and k
because (ao/A, )z (( l. Integrating over q and k we get
S(B) = (B/Bo)3t2, where

1j/3
0

Bz) =
(4~) (2~@A ) t s A, b

(22)

To estimate BD we should know the pinning parameter
yU. That can be obtained from the value of critical cur-

rent density J,b along layers in the framework of the col-(e)

lective pinning theory (see [13,14]). van der Beck et al.
[14] found that in Bi-2:2:1:2 the regime of weak col-
lective pinning of single vortex takes place in the range
of fields below =5 T. In this regime the correlated vol-
ume consists of one pancake of dimensions a0s, such a
regime takes place in the fields below =10(J,b/Jo)H, z,
where Jo = 4c@o/3~3$,b(4vrA, b) is the depairing cur-
rent along the a bplane -and H, 2 = 4o/2' g,b. The crit-
ical current density in the single pancake pinning regime
1s

&/2
(ci J YU sah
ab 0

4c66

&/2
4cyU
3~3' 0

For J,t, in the range 5 X 105 —5 X 106 A/cmz [14], we
obtain 7 U in the interval 2 X 10 —2 X 10 2 erg /cm4.
Taking the parameter A b

= 1700 A, we estimate the
decoupling field BD at T « T;„ to be in the interval 0.4—4
T. Similar scale for suppression of J(') by a perpendicular
field at low temperatures was found in Bi-2:2:1:2 by
Cho et al. [15] from the 1-U curve measurements.

As the temperature increases, the effect of pinning de-
creases due to the thermal depinning. However, thermal
fluctuations of pancake vortices reduce the Josephson cou-
pling [9] and plasma edge tu, (B) Accord. ing to the data
obtained by Cho et al. [15], the critical current along the
c axis, J~'), vanishes along the decoupling line which
lays slightly above the irreversibility line in the plane
(B, T) On this line .cu, should vanish also.

In summary, we have shown that low frequency optical
properties of Josephson-coupled superconductors for po-
larization of the electric field along the c axis at low tem-
peratures are strongly affected by the dc magnetic fields
both parallel and perpendicular to the layers. Such strong
magnetic fields shift the plasma edge to zero frequency,
the Josephson character of the interlayer current being re-
sponsible for this effect. Thus reflectivity measurements
in magnetic fields provide information on the effective
interlayer critical current J(') averaged over the sample,

Eq. (20). In the case of the perpendicular field they also
provide information on pancake vortices which strongly
affect J,.c and ~, Note that J,.c determined by such
measurements may be more accurate than that determined
from I Ucu-rve (dissipation) data. In the latter case an ar-
bitrary voltage criterion is used to define J~c), while in the
optical method this problem does not exist because J,'." is
extracted from the real part of the dielectric function.
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