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Dynamical Transition in the signer Solid on a Liquid Helium Surface
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We have observed a dynamical transition in the Wigner solid on liquid 4He. The ac Corbino
conductivity cr, jumps abruptly at certain input voltage and shows hysteretic behavior. The threshold
input voltage Vt& has dependences on the magnetic field 8 perpendicular to the surface, frequency co,
electron density n„and electric field E~ as V,h ~ B '~ 'n,"E~. We attribute the conductivity jump
to the collective sliding of the electrons out of the periodic deformation of the He surface.

PACS numbers: 73.20.Dx, 67.40.Hf, 73.50.Fq

Electrons trapped on the liquid He surface constitute a
unique two-dimensional system [1]. Since the He surface
is smooth and has no impurities, it realizes extremely
high mobility, even over 10 cm /V sec [2], and behaves
as an ideal nondegenerate electron system. The most
prominent phenomenon is a transition to the Wigner solid
(WS) phase, in which the. , electrons form a triangular
lattice. The WS on liquid He is accompanied with the
periodic surface deformation whose wave vectors equal
the reciprocal lattice vectors of the crystal. Since the
deformation comes from the static part of the coupled
plasmon-ripplon (CPR) modes [3], we refer hereafter to
the WS state accompanied with the surface deformation
as the CPR state. The first identification of the WS was
made by observing the CPR resonance [4]. In this Letter,
we report the observation of a dynamical transition in the
WS on the liquid 4He surface. The transition appears as
an abrupt jump of the electron conductivity with changing
the external ac field. We attribute the transition to a
collective sliding of the electrons out of the periodic
surface deformation; the transition from the CPR state to
the sliding state of the WS.

We have conducted an accurate measurement of the
diagonal component of the ac conductivity tensor, o-, .
We employ a capacitive coupling method, which was first
developed by Sommer and Tanner [5]. A concentric-ring
copper electrode pair, which is known as the Corbino
disk, is set 1 mm beneath the He surface. The inner
and outer diameters are 20 and 30 mm, respectively, and
the gap between them is about 0.1 mm. The electrons
are generated at 1.4 K by thermionic emission of a
tungsten filament, which is located 2 mm above the
liquid. The electrodes are biased at a positive voltage
Vd„and the electron density n, is determined by the
shielding condition of the electric field above the liquid,
n, = eVd, /4~ed, where e is the dielectric constant of
liquid 4He, and d the depth of the liquid. The data
reported here are taken at the electron density n, =
1.08 &C 108 cm unless otherwise specified. A circular
brass guard electrode surrounds the electrons, which is
kept at —1.5 V to confine the electrons radially. The
electrode assembly is enclosed in a copper cell, which is
mounted on a dilution refrigerator.

To measure o. , an ac voltage V;„of 100 kHz is
superimposed to the inner electrode. The current is
detected from the outer electrode, which is capacitively
coupled to the electrons, as a voltage induced on both
ends of a capacitor C,„„which is connected between
the outer electrode and the ground. We apply a static
magnetic field B perpendicular to the surface. The in-
phase and quadrature components of the output voltage
V,„, are monitored by a vector lock-in amplifier. We
obtain o.„by fitting V,„, with a formula given by [6,7]

V,„t 22 C','( ,)
f(P. .. ), ( )

where

X [N, (Pr, )J,(Pr;) —J, (Pr, )N, (Pr;)],
and p = Q itocr, ,—'(C + C'). Here r, and r; are the
outer and inner radii of the Corbino disk, respectively.
C denotes the sheet capacitance between the electrons and
the Corbino electrodes, whereas C' is the one between the
electrons and the upper cell wall. J] and N] are the Bessel
and Neumann functions of first order, respectively.

The inset (a) of Fig. 1 shows the temperature depen-
dence of o., at 8 = 261 G for 2.0 mVv v (peak-to-peak)
input voltage. We identify the Wigner transition as an
abrupt increase of o- at 220 mK. This melting tem-
perature is consistent with the generally accepted value
of the critical plasma parameter, I, = 127. Note that the
increase of o under the Corbino geometry corresponds
to the decrease of the mobility p, .

In Fig. 1, we show the typical behavior of o- ' of
the WS, as a function of the input voltage V;„. At
about 5 mVpp o ' shows a maximum, then decreases.
This strongly non-Ohmic behavior is observed only in
the WS. Increasing V;„ further, o- ' tends to a constant
and jumps abruptly. The fluctuation increases above the
jump. In the downward sweep, o ' does not follow the
same path as the upward one, and the jump occurs at
lower V;„ than the upward sweep case. Below the o.

jump, the upward and downward sweeps follow the same
trace. Both the upward and downward threshold voltages

0031-9007/95/74(5)/781(4)$06. 00 1995 The American Physical Society 781



VOLUME 74, NUMBER 5 PHYS ICAL REVIEW LETTERS 30 JANUARY 1995

(

C)

I

&C

1..2 I I

.- o„„(Q }
1..0— ~ I ~ ~

[
I ~ ~ ~

J
I ~ ~

(b)

0.8-&0' = Al

r)c
4-

0.6—
710

s a ~ s I s ~ ~ s I ~ ~ a

100 150 200

T (mK)

0.2—

(a)

I ~ ~ r I

250 300

l
~ I ~ ~

0.0,—

0.00 0.05 0.10

Vin (Vpp)

0.15 0.20

FIG. 1. cr, ' as a function of driving voltage V;„, at T =
80 mK and B = 217 G. Arrows indicate the direction of the
sweep. Inset: o.„as a function of temperature. (a) V;„=
2.0 mVpp and B = 289 G. (b) V;„= 100 mVpp and B =
317 G. T and T„, denote the Wigner melting and the non-
CPR transition, respectively (see text).
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vary from run to run, but are located within about 10%.
Near the thresholds, the electrons are very sensitive to
the external disturbance, e.g. , the mechanical vibration
of the cryostat easily triggers the jump. It should be
emphasized that the electrons become more mobile above
the thresholds.

The most striking feature in the o., jump is its
power law dependences on such quantities as the applied
magnetic field, pressing electric field, driving frequency,
and electron density. In Fig. 2, we show the threshold
voltage V,h as a function of B for three temperatures.
Although the jump is hysteretic, V,h's collapse onto a

straight line very well in the log-log plot, so it obeys
a power law, V,h ix B~ T. he exponent g is about —0.8.
The hysteresis is largest at the intermediate field, and it
becomes less prominent as B increases. Approaching the
melting temperature T, V,h decreases and deviates from
the power law at high field. The jump disappears at T .

One can control the electron-ripplon coupling by
changing the bias voltage Vd„ i.e., the electric field E~
which presses the electrons toward the liquid. To study
the inhuence of the pressing field on the o. jump, we
measure V,h for various E& 's while keeping n, constant.
The results are shown in Fig. 3. We find definitely that
V,h is a linear function of Eg.

V,h depends also on the frequency ~ and electron
density n, . From 10 up to 150 kHz, V, h is almost
inversely proportional to cu. Above 200 kHz, V,h deviates
from the cu

' dependence and tends to be independent of
~, and the threshold fades. From the E& dependence such
as in Fig. 3 for various n, 's we obtain the n, dependence
of U, h by picking up U, h's at the same E&. This analysis
yields the result V,h ~ n,' . Our observation of V,h is
summarized as follows:

V ~ B
—08 —I 15E

While preparing this Letter, we became aware that the
similar o. jump was observed previously by Giannetta
and Wilen [8]. They found the o;, jump in the mag-
netic field sweep for various drive voltages. The phe-
nomena which they found seem the same as what we
have observed here. They interpreted the o., jump as the
nonequilibrium melting of the WS, caused by the mag-
netic field induced shear. We believe that the nonequilib-
rium melting is not an adequate interpretation of the o-

jump, because their model can never explain the strong
frequency dependence of the threshold. We give a simple
model, which explains systematically the dependences of
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FIG. 2. Threshold voltage V,h as a function of magnetic field
B. The filled symbol denotes V,h in the upward sweep, while
the open one is for the downward case. Lozenges, 15 mK;
circles, 100 mK; squares, 205 mK.
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FIG. 3. Vt& plotted as a function of the pressing electric field
F&, at T = 15 mK and 8 = 724 G. Open and filled squares
indicate the upward and downward drive sweeps, respectively.
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V,h on various quantities including the frequency, on the
basis of the sliding concept in the following.

In equilibrium, the electrons are positioned at each
bottom of the periodic, approximately sinusoidal, de-
formation of the surface [3,9]. In the presence of the
electron-ripplon interaction, the deformation causes a spa-
tial corrugation of the potential energy for the electrons,
having the same sinusoidal form as the surface deforma-
tion itself. In the cr measurement, the ac driving field
tilts the potential as a whole. For the field at which the lo-
cal potential minima disappear, the electrons can move on
in the tilted potential, i.e., the electrons slide. This results
in the observed abrupt jump of o, To some extent the
situation is analogous to the rigid-body model of a sliding
charge-density wave (CDW) [10].

The magnetic field applied perpendicular to the surface
leads to two important effects. (1) In the Corbino
geometry, the magnetic field enhances effectively the
driving electric field. (2) If the scattering is negligible,
the electrons drift along the contours of the deformation
potential.

In the capacitive-coupling method, the ac drive applied
to the inner electrode causes the inhomogeneity of the
electric field in the cell. The electrons Aow so as to cancel
this field inhomogeneity, i.e., the current is caused by
the shielding effect. Since the magnetic field decreases
cr, , the shielding by the surface electrons is thereby
weakened. The higher the magnetic field, the stronger
the inhomogeneity of the electric field in the WS. We
see that a higher magnetic field keeps the potential slope
steeper, and hence lowers more the sliding threshold
voltage.

Ignoring the scattering, the Lorentz force drifts the
electrons along the contours of the potential. As long
as the driving field is so weak that the potential minima
exist, each electron localizes on the closed contours
around each potential minimum. When the minima
disappear, all the contours are no longer closed, but
extend outside, and the electrons can slide without limit.
Therefore, even in the presence of the magnetic field,
the disappearance of the potential minima gives the
appropriate criterion for the electron sliding.

So far we have implicitly assumed that the deformation
potential is rigid. This can be justified under the condi-
tion that the electron velocity exceeds the phase velocity
of ripplons [3]. We find that, in our experiment, the maxi-
mum velocity of the WS at the threshold exceeds the rip-
plon phase velocity by a factor of 4. Therefore, we may
assume the rigid potential in our experimental condition.
Once the electrons start to slide, the original deformation
disappears, because the ripplons cannot follow the fast
electron motion. This situation is quite different from the
case of the sliding CDW, and offers a new aspect in gen-
eral sliding phenomena.

With the sliding concept we discuss the threshold.
The maximum restoring force for the electron in the

deformation is given by [3,11]

F, ,„——(eFi + Uo, ) (nG,), (3)
O Gi

where o- is the surface tension of He, G] the shortest
reciprocal lattice vector, the "electron form factor" nG is
expressed in terms of the Debye-Wailer factor W as e
and y is an orientation dependent constant of about 3.
The polarization term UG here is so small that we could
neglect it.

The external driving force is given by Fd =
—e~n, v o., ', where v is the electron velocity, which
is obtained in the course of the derivation of Eq. (1). The
maximum driving force Fd „results at the gap of the
electrodes, and is obtained as

Fdmax
2

eau Co,,'f(P, r„r;)V;„ (4)
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FIG. 4. V;„-T phase diagram at B = 217 G and E~ =
92.5 V/cm. Open and filled circles are V,h's for the upward
and downward sweeps at fixed temperatures, respectively.
Open and filled squares are the ones, respectively, for the
downward and upward temperature sweeps with fixed drive.
The transition region is indicated by a checked pattern.
Lozenges denote T„,'s (see text). Plain, dotted, and hatched
regions indicate the fluid, the CPR state, and the non-CPR
state, respectively.

We may regard f(p, r„r;) as a constant of order unity
so far as o. just below the threshold is concerned. The
cr jump occurs when Fd „exceeds F, „. From this
condition, the following expression for V,h emerges,

0. ..(,)
Vthl ~ E~.

co G]
From Eq. (5), we see the following: (1) V,h is inversely

proportional to cu, providing that a- is independent of ~;
(2) because Gi is proportional to ~n, and rr„ is propor-
tional to n„V,h is proportional to n,'; (3) the form factor
nG, makes V,h vanish at the WS melting, cf. Fig. 4. These
conclusions, in particular (1) and (2), immediately explain
part of the experimental results for V,z, Eq. (2). The other
relations, V,h

~ B o sE&, are not obvious from Eq. (5). In
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the fluid phase where the Drude law holds, o. is approxi-
mately n, e/pB2 in a strong magnetic field. Moreover, p,
in the ripplon limited regime is proportional to E~ . If
the Drude law held also in the WS, Eq. (5) would give
larger exponents for the B and E& dependences than the
observed ones. However, we have in fact found that cr,
in the WS is inversely proportional to B and E&. The
origin of this peculiar behavior of the WS has not been
understood. Detailed studies for this interesting subject
are under way. From Eq. (5) and o.„.~ B 'E~', we ob-
tain the relation V,h ~ B 'E&. The B dependence is fairly
close to the observed one, i.e., B, and the E& depen-
dence agrees well with the experimental result.

To check our model quantitatively, we estimate F, „
and Fd „at the threshold from Eqs. (3) and (4). The
result is that Fd „is roughly 6 times as large as F, ,„.
The sliding criterion, that Fd „exceeds F, ,„, is satisfied.
Further quantitative comparison of Fd „and F, „will
be made by considering self-consistently the effect of
the distortion of the potential to the CPR dynamics.
We conclude that the rigid-body sliding model gives a
fairly good explanation for the principal experimental
observations of the dynamical transition.

From the dependences of V,h on T, B, E&, and n„
we can draw a phase diagram in V;„-T-B-E&-n, space.
A V;„-T section of the phase diagram at B = 217 G,
F~ = 92.5 V/cm is shown in Fig. 4. As suggested in

Fig. 2, U, h decreases as T approaches T . At low V;„
and low T, the CPR state is formed. It is interesting
to elucidate whether the WS melts above V,h. To see
this, in the inset (b) of Fig. 1, we show the cr„ taken
at V;„= 100 mVpp and at 317 G. As T decreases, o-

decreases down to 200 mK. This is the same behavior
as in the 2.0 mVpp data and rejects that the electrons
are in the fluid phase and scattered from ripplons. Below
200 mK, slightly lower than T identified by the 2.0 mVp p

measurement, cr begins to increase again with lowering
temperature. Eventually the abrupt o-, jump, which is
the transition to the CPR state, occurs at 128 mK. We
speculate that the small change of o. at 200 mK indicates
the transition to the Wigner solid which is decoupled from
the surface deformation. We may call it a non-CPR state.
In Fig. 4, we show the possible non-CPR state by plotting

the temperature T„, where o changes the temperature
dependence. T„, slightly decreases with increasing V;„.
Studies such as plasma resonance will shed further light
on the nature of this new state.

In conclusion, we have found that the strong ac
electric field in the Corbino configuration causes a unique
dynamical transition in the Wigner solid on the He
surface. The transition is assigned to the sliding of the
WS out of the surface deformation. Our observation has
revealed that the electron-ripplon coupling makes the WS
dynamics strongly nonlinear. The WS on the liquid He
will offer an interesting example for the study of nonlinear
phenomena.
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