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It is first shown from the modulation instability of the conserved Zakharov equations that regular
soliton patterns with a periodic sequence in space and time, and spatiotemporal chaos with irregular
localized patterns, are formed in the different regions of the unstable wave numbers. The route
from quasiperiodic to the coexistence of quasiperiodic and subharmonic, then from quasiperiodic and
subharmonic to subharmonic, and furthermore to spatiotemporal chaos evolving from regular spatial
patterns, is found. The formation mechanism of irregularly localized patterns is also revealed.

PACS numbers: 47.10.+g, 52.35.Mw

Spatiotemporal chaos in a continuum Hamiltonian sys-
tem is an important subject used to investigate the long-
term behavior of a volume preserving system with an in-
finite number of degrees of freedom, which leads to the
soliton pattern structure. To our knowledge, so far, little
work has been done on this problem in plasmas.

In the present Letter, we investigate the pattern dynam-
ics and the feature of spatiotemporal chaos evolving from
spatial patterns first using the conserved one-dimensional
Zakharov equations (ZE’s) [1],

i, E + 3’E = nE,
2 2 21512 M
drn — dtn = 9LIE|”.
Here E(x,?) is a slowly varying envelope of the electric
field, and n(x, ) is an ion-acoustic density.

So far the ZE’s are the most extensively studied
model used to describe strong turbulence in plasmas.
This system has three conserved quantities, i.e., the
quasiparticle number, the momentum, and the total energy
of the system.

The linearized stability analysis of the perturbation
expli(k’'x — wt)] from a spatially homogeneous field Ey
for Egs. (1) gives the growth rate of the modulational
instability (MI) as [2]

k' 242 271/2 24172
y = ﬁ{[(l K2+ 8B -+ kAT @
for 0 < k/ < 2E,.

It was realized the localized patterns are formed from
MI, and the single soliton for such Hamiltonian systems
has analytically been obtained [1].

Equations (1) are a near-integrable system [2] and
have at least two kinds of fixed points: a center at (0,0)
and a saddle at (Ey,0). In a simple case wherein only
one specified unstable wave number k', which satisfies
Eq. (2), is considered, we solve the linearized Eqgs. [1] in
initial values (Ey, 0) and obtain the eigenvalues

1/2
A= {3KP00 = k2 + 8E3Y? — (k2 + D} = a0,
Ay = —Ag,
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1/2
{35700 — K27 + 8E3]” + (7 + D} = iy,
Ay = —iwg,

and the eigenfunctions f = Z?:, cier f;, where f; =
(K, A;, —gi, —Aigi), c¢; is coefficient, and g; = k"2 +
Ai/Eo. Obviously the saddle is in (f1, f2) subspace.

We now discuss numerical simulations of Egs. (1) to
investigate the global behavior and choose the initial
condition to adjoin the saddle, which at t = 0 a very
small spatial inhomogeneity is added on the spatial
homogeneous state, ¥y = (Ej,0,0,0), as follows [2]:

v = ‘I’o + (C[fl + C2f2) E() COS (k'x) /500, (3)

wherle Vo = (ReE,ImE,n,d,n);—g = (Ey,0,0,0), and fac-
tor 555 is only to show that this is a very small perturbation
adjusted for convenient calculations. Our initial condition
ensures that the trajectories in phase space will locally lie
in a saddle subspace. The case ¢; = ¢, = 1, which cor-
responds to the most stable orbit far from the homoclinic
(HMO) [2], has been chosen in the discussion below.

The split-step method for E with a preestimate for
density perturbation n is first used to compute Egs. (1)
with the periodic boundary condition in which the spatial
grid L is chosen, so that k'L = 277, and the number
of grids is 64. During the computation the conserved
quantities are preserved to the order of 1075

It is noticed from the numerical results that by varying
with k = k’/</2E,, one finds a bifurcation point at k. =
0.9295, which divides the system into completely different
dynamic behaviors both temporally and spatially.

For k. < k = 1, the long-term behavior of manifolds in
phase space is only a single loop starting from and return-
ing to the same saddle (Ey,0) to form the Kol’'mogorov-
Arnol’d-Moser torus as seen in Fig. 1(a). The envelope
amplitude of the electric field is performing an exactly pe-
riodic oscillation [Fig. 1(b)]. Simultaneously, the power
spectrum, as seen in Fig. 1(c), is of an isolated discrete
distribution with equal frequency interval, which shows
a sharp peak for & = 0.98 at the fundamental frequency
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FIG. 1. Manifolds of phase space from the saddle point
(Eo,0) at x = 0 for k = 0.98, (b) envelope amplitude |E(x,t)|
versus time for k = 0.98, (c) power spectrum for £ = 0.98, and
(d) contours of |E(x,t)] = const for k = 0.98, t = 500—550.

w; = 0.4188 and is excited from the spatially homoge-
neous state and nth (n = 2,3,4,...) harmonics of w,.
However, the intensities of the harmonic spikes are ex-
tremely weak compared with the fundamental one. These
features show that there exists an exactly periodic recur-
rence, like the Fermi-Past-Ulam (FPU) [3] process. For
the spatial characteristics, we see from Fig. 1(d) that reg-
ularly localized patterns with a spatially and temporally
periodic sequence are formed in the evolution of this sys-
tem. These solutions propagate undisturbed with a con-
stant speed. We observed that each one of these solu-
tions is of symmetry and rapidly exponential decay in
two sides around peak amplitude and is similar to single
soliton solution of Egs. (1) in the form E(x,?) ~ sechaé,
where « ! is the half-width and ¢ = x — ut, u is a con-
stant speed [1]. Thus, the ZE’s system for k. < k < 1,
indeed, is executing a regular motion with coherent pat-
terns. When k is reduced to 0.93, the motion in a two-
cycle [Fig. 2(a)], which corresponds to localized patterns
with slightly different structures [Fig. 2(b)], emerges, and
the pseudorecurrence appears.

When k < k., the evolution of trajectories in phase
space with the long lapse of time exhibits clearly irregular
homoclinic orbit crossings filling up substantial portraits
of phase space as shown in Fig. 3(a). At the same time,
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FIG. 2. Manifolds of phase space for k = 093, and
(b) contours of |E(x,t)] = const for k = 0.93, r = 350—425.
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FIG. 3. The long-term behavior of |E(x,t)| for k = 0.88.
(a) Manifolds of phase space at x = 0, (b) envelope amplitude
|E(x = 0,t)| versus time, (c) contours of |E(x,t)| = const, t =
500—550, and (d) spatially localized structure, ¢ = 500—550.
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amplitude of the electric field experiences a quasiperi-
odic oscillation and exhibits stochastic behavior as seen
in Fig. 3(b). That the contours for E(x,) = const in
Fig. 3(c) are distorted indicates the existence of many ir-
regularly localized patterns, which are still kept in the
propagating process with stochastic speeds as shown in
Fig. 3(d). The above feature illustrates the evolution of
the spatial pattern that follows the temporal chaos.

Furthermore, the largest Lyapunov exponent with the
definition

. . _ D(1)
L, =1 1 "n| ———
¢ Pt D(tir(‘{)l—%){t n|: D(t = 0) ]}

is positive for k < k., as seen in Fig. 4, where D(¢z) =
|E(0,1) — E5(0,1)l, E((0, 1), and E,(0, t) denote the E(x, t)
from two neighboring points in phase space at x = 0.
Thus, the temporal chaos associated with the spatial
patterns for the continuum Hamiltonian system is clearly
observed.

In order to understand the evolutive route to spatio-
temporal chaos, we observe the structure of the power
spectrum. When k£ = 0.95, w, increases to 0.5732, and an
incommensurate frequency component w, = 0.1157 and
the linear combination w; * w, appear simultaneously
in Fig. 5(a). When k is reduced to 0.93, in addition
to wy = 0.6471, w, = 0.2324, and w,; *+ w,, where their
spikes of spectrum are weakened, the subharmonics (2n —
Dw;/2, n = 1,2,3,..., appear in Fig. 5(b). When k =
0.9295, the quasiperiodic behavior disappears, and only
subharmonics exist with the further enhanced spikes, as
seen in Fig. 5(c). Furthermore, to reduce k, the power
spectrum with a broad-band noiselike structure occurs
in Fig. 5(d). Thus, the evolution from quasiperiodic to
quasiperiodic and subharmonic, then from quasiperiodic
and subharmonic to subharmonic, furthermore, to chaos
is found in our system. For the different ¢, and c,, the
above route is also observed.
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FIG. 4. Lapunov exponent versus k.
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FIG. 5. Power spectrum. (a) k = 0.95, (b) k = 0.93, (¢c) k =

0.9295, (d) k = 0.92.

We will explain the reason in terms of the conception
of harmonic oscillators by regarding each frequency as
an oscillator. When k is 0.98, as seen in Fig. 1(c), the
discrete spikes are isolated. However, when k approaches
to k., the growth rate does increase, and w;, w; *
w, and subharmonics make frequency intervals become

narrow [see Figs. 5(a)-5(c)] and eventually oscillator
overlapping for & < k. occurs because of the enhanced
nonlinear interaction of the Langmuir wave with the ion-
acoustic wave.

In order to further investigate the chaotic property of this
system, we also computed the autocorrelation function [4]
and found that the rapid decay of the correlator and the
large Lyapunov exponents (Fig. 4) represent a very strong
chaotic property for system, Eqs. (1). These justify the
nature of the mixing of trajectories in phase space. Thus,
there exists a Kol’mogorov-Sinai entropy [5].

To comprehend the formation of the irregular spatial
structure, we investigate the energy shared by each of
Fourier modes for E(x,t) = >, E,(t)e’**, where k, =
2wn/L, E, = E,, and E, versus time. This is similar to
that in Ref. [6]. The spatially localized structure, indeed,
can be described only in terms of finite modes. In our
simulations, only eleven modes, i.e., n = 5, are included
within the accuracy of 107 for conserved quantities,
because the intensities of the higher Fourier modes
have rapidly decreased. Energy initially confined to the
master mode (n = 1), whose intensity increases with &
decreasing and is excited from the spatially homogeneous
state by MI, would extend to high harmonic slave modes.
These modes are periodic in the sense of the Fermi-
Pasta-Ulam (FPU)-like recurrence for k. < k but are
unstable and stochastic for & < k.. In the latter case, the
interaction of slave modes with the master one causes the
latter to be unstable due to the reaction of slave modes,
and transferring more and more energy from the master
to high harmonics at a fast rate. Thus, the FPU-like
recurrence breaks. It leads to the formation of spatially
irregular patterns, which are influencing temporal chaos.

In summary, the dynamics of regular spatial patterns
with a periodic sequence in time and space are shown,
The route from the quasiperiod route to subharmonics to
spatiotemporal chaos for Egs. (1) is first found. Features
of spatiotemporal chaos with the coexistence of temporal
chaos and spatially irregular patterns are observed.
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