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Direct-to-Indirect Crossover in Semiconductor Alloys: A First-Order Phase Transition?
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We study the direct-to-indirect gap crossover in Al Gal, As alloys driven by Al addition, in

analogy with temperature-induced phase transitions. The adopted real-space formalism incorporates
occupational disorder in a realistic manner: different atomic configurations, accommodated in a
supercell, are generated and solved independently. We perform a systematic study of the scaling
of calculated gap properties of Al Gal As alloys with the cell size, and consider system sizes ranging
from 64 to 8000 atoms. Extrapolation to infinite system size follows scaling laws appropriate for first-
order phase transitions, and allows an accurate determination of the crossover composition x, .

PACS numbers: 71.10.+x, 71.20.Ad, 78.55.Cr

The current development of electronic structure calcu-
lations allows for large systems to be treated and solved,
in particular, taking into account surface effects, impu-
rities, and disorder over relatively extended regions in
space. It is well known that the finite size of a sys-
tem produces systematic deviations from the macroscopic
behavior, particularly around an order-disorder transition
[1]. Knowledge and control over finite-size effects are
powerful theoretical tools, since they allow nontrivial
extrapolations of thermodynamic quantities toward their
infinite system values. Such procedures, which are stan-
dard in statistical physics, have not yet been explored in
electronic structure calculations.

In this Letter we consider a relevant problem both
in fundamental and in applied semiconductor physics,
namely, the direct-to-indirect band-gap transition in semi-
conductor alloys. Al Gai As alloys are a prototype sys-
tem for this transition. The optical gap remains direct
up to x near 0.4, becoming indirect for larger Al concen-
trations. The most striking experimental signature of this
transition is a sharp decrease of the luminescence intensity
with composition around x = 0.4 [2]. Basic questions re-
garding this change in optical behavior remain open. Is
it a critical transition, taking place at a well defined com-
position x„ora crossover over a finite range of com-
positions? If critical, is the luminescence intensity drop
continuous or discontinuous at x, ? These issues are hard
to resolve experimentally, since temperature and sample
imperfections always contribute to broaden the transition.
We show that these questions may be investigated theo-
retically in close analogy with order-disorder transitions
in statistical physics.

The binary constituents GaAs and AlAs crystallize in
the zinc-blende structure and have nearly identical lattice
parameters, which yield unstrained solubility in alloying
over the whole composition range. The crystal structure
consists of two equivalent fcc sublattices, one of which is
occupied by As and the other one by the group-III ele-
ment. In spite of their structural and electronic similarity,

GaAs is a light-emitting material, while A1As is not. This
is understood from their electronic band structures, since
the top of the valence band wave functions correspond to
Bloch wave vector k = 0 (I ) for both compounds, while
the bottom of the conduction band wave functions cor-
respond to k = I for GaAs and k = (vr/a, 0, 0) (X) for
AlAs. Optical transitions between Bloch states are al-
lowed if Ak = 0. Therefore they are allowed within the
main gap in GaAs, but not in A1As. In random alloys,
translational symmetry is broken, k is not a good quan-
tum number, and such selection rule is not applicable.
The usual 1 -X conduction band crossing criterion for al-
loys is based on effective potential typ-e approx-imations

[3], which presume or impose the zinc-blende symmetry
of the constituents to the alloy environment. Interpolated
band structures are thus obtained over the alloy's compo-
sition range.

We have recently studied the direct-to-indirect gap
crossover in Al, Gal As alloys through a real-space
formalism —the small crystal approach —which provides
clear identification of the transition without involving
k-space special symmetry points assignment to the elec-
tronic states [4]. As the basic cluster size increases, the
small crystal approach naturally provides a hierarchy of
approximations for the treatment of disordered systems.
In some cases, convergence of the results with the basic
cluster size is very fast, and can be ascertained by simple
inspection [5]. Around a crossover in physical behavior,
however, finite-size effects are enhanced, and accurate
identification of relevant physical quantities cannot be
performed by inspection.

In the small crystal approach, a basic cluster is cho-
sen, and different configurations are defined according
to specified atomic occupations and periodic boundary
conditions. Disordered A'"8& C alloy's properties are
approximated by configurational averages over structures
accommodated in the basic cluster of C sites [4,5]. This
approximation becomes exact in the C = ~ limit. For
finite C, averages are performed over an ensemble of
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structures generated numerically according to the occu-
pational probabilities of the sites in the group-III fcc
sublattice. For random Al Ga~ As alloys, these are
P(A1) = 1 —P(Ga) = x.

The nature of the gap of a specified Al„Ga As +„
compound (8) is determined by the electric dipole moment
of the minimum gap transition, pt = (vt~p~ct), where
~vt) and ~ct) are the valence and conduction minimum

gap states of the compound. Optical transitions are
allowed if pq 4 0. It is convenient to define a related
scalar quantity, 8t = )pt( /(po(, where po is the dipole
moment for GaAs. Within the small crystal treatment,
8(x) for an alloy of composition x is approximated by
the ensemble average (8t)c over values calculated for
structures i8) generated on a C = 2(m + n) basic cluster.
Note that 8(x) decreases from 1 to 0 as x goes from
0 (GaAs) to 1 (A1As). In analogy with order-disorder
transitions, 8 (x) is identified to a scalar order parameter.
The "ordered" ("disordered") range corresponds to direct-
gap (indirect-gap) alloys, and the transition is driven by
increasing x, instead of the temperature, for example.
Order-disorder transitions are always associated with
some broken symmetry in the system. In the present case,
this involves the relative symmetry of the gap-edge states,
through the quantity (v~p~c). For periodic potentials,
wave function symmetry is naturally labeled by the Bloch
wave vector k, leading to the k-conservation selection
rule stated above. Such classification is not applicable
to disordered materials. However, one may perform a
spectral decomposition of the wave functions into zinc-
blende symmetry components. The ordered range would
correspond to a predominant I -symmetry spectral weight
for both conduction and valence edge states while, in
the disordered range, X character would dominate the
conduction state.

The electronic properties of Al„Ga As +„ordered
compounds are described within the tight-binding formal-
ism. Calculations were performed on cubic basic clusters
with L3 conventional cubic unit cells of the fcc lattice,
therefore with C = 8L3 atomic sites. Electronic states
are represented on a 5 orbitals per site (sp3s*) basis set
[46]. Since full matrix diagonalization procedures be-
come unnecessarily time consuming for large values of C,
a new algorithm was developed within the small crystal
approach for the determination of the relevant eigenstates
of the Hamiltonian A. The method consists in searching
for the tight-binding wave function ~'P) which minimizes
the expectation value (W~(9E —

epgf) ~V) [7]. This quan-
tity is minimized by the energy eigenstate whose eigen-
value is closest to the reference energy e„f.By properly
tuning e„fin the gap region, the band-edge states ~vq)
and ~ct) are obtained. Minimizations are performed by a
simple steepest descent algorithm.

Figure 1 presents results for 6(x) calculated for basic
cluster sizes C = 64, 216, and 4096. As C increases, the
direct-to-indirect transition sharpens. The composition
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FIG. 1. Calculated order parameter versus composition for
the indicated basic cluster sizes. For C = 64, each data
point corresponds to an ensemble average over 400 randomly
generated configurations for this basic cluster size, while larger
sizes correspond to ensembles with 40 configurations.
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where 8+ (8 ) is the asymptotic value of the order
parameter for x just above (below) x, . Note that, for

dependence of 8 for increasing C is quite similar to
the temperature dependence of the order parameter (e.g. ,
magnetization) in Monte Carlo simulations performed in
lattices of increasing size [1]. The effect of the finite
lattice is to "round" and shift the transition region. This
occurs both for second-order transitions, when the order
parameter goes continuously to zero at the transition
temperature T„and for first-order transitions, which are
characterized by a discontinuity of the order parameter at
T, . It is quite difficult to locate the transition accurately,
or even to determine its order, based on Monte Carlo
simulation results for the mean order parameter versus
temperature. Higher moments of the order parameter
distribution are needed to establish these features [8,9].
We proceed the analogy assuming a well defined x,
exists below which, in the C .- ~ limit, 8 appears
spontaneously with a nonzero value.

A distinctive feature between continuous or discontinu-
ous transitions is the absence or presence of phase coex-
istence at the transition point x, . This allows the analytic
nature of the transition to be inferred from the asymptotic
behavior of the fourth-order reduced cumulant,

m, (4)
3[M,(2)]'

where ML(n) = (8")t is the nth moment of the order
parameter distribution for systems of linear dimensions
I.. This quantity has a minimum at the effective transition
composition, x, (L). In the infinite-lattice limit and at fixed

2
x, V =

3 except for a discontinuous transition at x = x,
In this case,
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x ~ x„6and all of its moments tend to zero as L
increases. Thus, for the disordered range, VI is not well
defined numerically in the L = ~ limit [10]. A simple
way to overcome this difficulty is to rigidly shift the
probability distribution of the order parameter away from
zero, by adding a fixed constant to the calculated 6
values.

Configuration ensembles generated for different system
sizes and compositions yield order parameter distributions
which were numerically analyzed. The statistics ranged
from at least 20 samples for L = 10 up to at least
200 samples for L ~ 6, allowing us to represent within
reliable accuracy the regions around the minima of
VL. Figure 2 presents results for the reduced fourth-
order cumulant calculated for system sizes L = 4 to 10
(C = 512 to 8000). Note that a minimum is always

2.present below 3; it becomes narrower and seems to
approach a nontrivial limit as L increases. This behavior
of the cumulant refIects an order parameter probability
distribution consisting of a superposition of two peaks.
Analysis of our results confirms that this is the case. As
illustrated by the inset in Fig. 2, the peaks correspond,
respectively, to direct- and indirect-gap structures in the
ensemble, which is the signature of phase coexistence, i.e.,
of the first-order character of the transition. For first-order
phase transitions, finite-size scaling theory predicts shifts
and broadening of anomalies to be inversely proportional
to the volume, L d in d dimensions [8,9]. Following
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FIG. 3. Effective transition compositions versus L -'.

the alloy analogy, we presume a L - dependence for the
location of the minimum, x, (L), and pre. sent in Fig. 3 the
variation of x, (L) with L 3 Note th. at an excellent fit to
this scaling law is attained for L ~ 6, up to the largest
value considered, L = 10. These correspond to C values
from 1728 to 8000. For smaller sizes, even for C = 1000,
considerable deviations are found from the asymptotic
scaling. The scaling of x, (L) confirms the assumption of
a well defined x, was correct. The L = ~ extrapolated
value of the critical composition is x,. = 0.366 ~ 0.004.

Our results for the order parameter are summarized
in Fig. 4. The asterisk gives the calculated infinite
system behavior of the order parameter at x, , with
the discontinuity 6 = 0.69 ~ 0.01 obtained from (2).
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FIG. 2. Composition dependence of the fourth-order reduced
cumulant around the critical composition, for the indicated
system sizes (for clarity, odd values of L are omitted). Solid
lines are guides to the eye. Away from the critical region, VI

2
approaches the trivial value —,. The histograms in the inset are
probability distributions of the order parameter for L = 6 as the
composition ranges from values below to above the minimum
(from top to bottom, x = 0.36, 0.38, 0.40). Note the double-
peaked character of the distribution, with the indirect-gap peak
overcoming the direct-gap one.
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FIG. 4. Composition dependence of the order parameter in
the virtual crystal approximation (dashed line) and in the
small crystal approach for C = 4096 (circles) compared to
the extrapolated ~-size crystal overall behavior (solid line).
The asterisk gives the coordinates (x„6). The converged
energy gap dependence with composition is presented in the
inset.
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The solid line indicates the overall extrapolated 6 X x
dependence. Comparison with results from C = 4096
shows that, even for this system size, finite-size deviations
occur over a considerable range of compositions around
x, . If one adopts the same model Hamiltonian within
the virtual crystal approximation (VCA), the resulting
6 x x dependence is given by the dashed line in Fig. 4.
The VCA predicts 6 essentially constant up to the band-
crossing composition x, = 0.3, where it drops to zero.

Besides a discontinuous drop of the order parameter
at T„first-order phase transitions are also characterized
analytically by singularities or anomalies in related ther-
modynamic quantities, such as the specific heat and the
susceptibility. The interpolated band-structure description
of the alloy problem predicts a "kink" in the composi-
tion dependence of the energy gap, i.e., a discontinuity in
the first derivative dFs, ~/dx, occurring at x, [3]. Previ-
ous theoretical studies have used this feature to identify
x, [11]. However, it is not possible to show that this
derivative is proportional to the order parameter, or to any
other function of the dipole moment matrix element. The
fact that (v~p~c) goes discontinuously to zero at x, does
not imply a kink in Es,~(x) at this composition. For the
system sizes considered here, results for the energy gap
converge relatively fast with L for all x, and do not show
a tendency to develop a kink at x, as L increases. The
result in the inset of Fig. 4 remains essentially unchanged
for 5 ~ L ~ 10. Contrary to the order parameter distribu-
tions, energy-gap distributions are single peaked. Quali-
tatively Fg p increases linearly with x in the direct-gap
region, and has a pronounced curvature in the indirect-gap
region. These behaviors merge smoothly around x, . Al-
though a kink at x, for L = ~ cannot be ruled out, from
the present convergence arguments its occurrence seems
unlikely.

In conclusion, the composition-driven direct-to-indirect
gap crossover in Al Ga] As alloys presents close anal-

ogy with temperature-driven first-order phase transitions.
The order parameter probes the relative symmetry of
band-edge states in the main energy gap. Monte Carlo
statistical mechanics techniques revealed the discontinu-
ous character of the transition and allowed accurate de-
termination of the transition composition and of the order
parameter discontinuity at x, . The value of x, determined
from a finite-size scaling ansatz for first-order transitions
is in excellent agreement with experimental data recently

reported in the literature [12]. Finite-size scaling laws,
developed in the context of considerably simpler statisti-
cal mechanics models, were shown to be applicable and
valuable in electronic structure calculations. We propose
this is a general point to be considered in alloy problems,
where analogy to first- or second-order transitions may
provide new tools and thus better understanding of differ-
ent types of crossover in physical behavior.
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