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Free Boundary Conditions at Austenite-Martensite Interfaces
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A mathematical model is presented for the dynamical strain-stress response of shape memory wires.
This model is based on a free boundary problem for the heat equation which incorporates bistable
potentials together with a physical constant, independent of stress or temperature, which accounts for
mechanically dissipative processes. An expression in closed form is derived for one of the most
important observables, namely the width of the hysteresis loops as a function of the elongation rates.
Excellent agreement with experimental results is observed.

PACS numbers: 64.70.Kb, 65.50.+m, 82.65.Dp

Shape memory alloys (SMA) and the pseudoelastic
hysteresis they exhibit have received sustained attention
in recent years [1—11]. The interest in these alloys, which
undergo a structural phase transition from a high tempera-
ture phase (austenite) to a low temperature phase (marten-
site), stems in part from their applicability as elements
in active structures. The shape change which accompa-
nies the phase transition is characterized by a large misfit
strain er (=10%) in the martensitic phase; some materi-
als, primarily NiTi, can undergo this transition thousands
of times without showing noticeable changes in their be-
havior.

A recent set of experimental results on NiTi shape
memory wires [8] prompted a number of theoretical inves-
tigations [8,12]. These experimental results showed that
the widths of the stress-strain hysteresis associated with
these wires depend on the corresponding elongation rates;
previous observations of similar phenomena were reported
in [10]. The dependence of the hysteresis widths on the
strain rates was attributed in [8] to an interplay between
the thermodynamics of the phase transition and heat flow
through conduction and convection. A one-dimensional
discrete model presented in that paper shows quantitative
agreement with the experimental results. That model is, in
fact, the first model in the literature showing quantitative
agreement with observed dynamical behavior of SMA's.

In what follows we present a related continuous free
boundary model, and we use its asymptotics to derive a
closed-form expression, Eq. (6) below, which relates the
most important experimental observables. This expres-
sion provides new insights on the physical phenomena
under consideration. For example, it predicts the exis-
tence of a critical load for which transformation of the
whole wire occurs instantaneously; this prediction is con-
sistent with new experimental observations on NiTi wires

TABLE I. Strain-controlled experiments. Comparison be-
tween the asymptotic stresses cr (in MPa) obtained from numer-
ical solutions, from Eq. (6), and from experiment for various
imposed elongation rates I.oe (in mm/min).

Lpe 1. =13cm I =7gcm Eq. (6) Expt.

0.5 in water
5 in water
50 in water
0.5 in air
5 in air
50 in air

4
354.5
391.2

362 364
415—425

451.1

350.4
354.5
391,3
361.1

425. 1

451.3

350.4
354.5
391.2
361.1

425,0
450.9

345 —355
350—360
370 400
355 —375
420 —440
450 470

[13]. Our continuous formulation allows, in addition, for
application of sophisticated free boundary solvers to our
phase transition problem, and thus permits us to obtain
very accurate numerical solutions. Comparison of numer-
ical and experimental results with our closed-form result
(6) yields good agreement for a wide variety of config-
urations, see Tables I and II. Departures from agreement
between Eq. (6) and numerical results, which is observed
in some extreme regimes, show that in such cases tran-
sient heat transfer effects are responsible, in part, for the
behavior of the wire. As argued in [12], our approach is
in marked contrast with others in which the velocity of the
free boundary is prescribed by certain functions of stress
and temperature, and which only allow for predictions of
a qualitative nature; see, e.g. , [1].

The quasistatic discrete model [8] is based on consid-
eration of the energetics of shape memory alloys, the re-
lease of latent heat and shape change associated with the
phase transition, and the conduction, convection, and dis-
sipation of heat in the wire and its surroundings. Ac-
cording to this model, an overall elongation AJ imposed
in a time interval At can be accommodated either by
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TABLE II. Stress-controlled experiments. Comparison be-
tween the asymptotic elongation rates (in mm/min) obtained
from numerical solutions and frotn Eq, (6) for various imposed
stresses (in MPa).

351 in water
360 in water
420 in water
360 in air
425 in air
450 in air

L=13cm
0.5218
5.245
50.4

0.3998
4.9—5.7
45 —61

L =78cm
0.5214
5.244
50.3

0.4482
5.0

30—38

Eq. (6)
0.5219
5.244
50.5

0.4481
5.2
28

o-Mo- = (0(s(r), r)) a-""

I ~ —~M (0(s(r), r)) I
—~""'

for ~s)0,
(3)

fors =0,
with initial and boundary conditions given by

means of small elastic deformations, by transformation
of austenite into martensite (occurring through propaga-
tion of an austenite-martensite interface), or by a com-
bination thereof. Small elastic deformations account for
the incremental strain if the stress in the wire is below
the critical stress o."d = o.M(0;„,) + a."~" on loading, or
above D.""'"'d = AM(0;„,) —cr"~" on unloading, at which
the phase transition from austenite to martensite is pos-
sible. Otherwise, elongations which include phase trans-
formation must occur, at a stress equal to the (discretized
value of the) critical stress. Here 0;„, is the interface tem-

perature, and a-M = o.M(0) is the Maxwell stress associ-
ated with the temperature 0; see Eq. (5) below. The stress
o-"~" is a material constant that accounts for dissipative
forces in the wire [8,12].

It follows that in the limit of small AI. the interface
moves with a continuous velocity, and the stress in the
wire must equal the (temperature dependent) transition
stress o- as long as the interface propagates. This is an im-

portant observation, since it allows us to model our phys-
ical configuration by means of a continuous free bound-

ary problem for the heat equation. Let us call 0 = 0(x, t)
the temperature in the wire, Op the ambient temperature,
l the latent heat of transformation per unit volume, and
set l* = l + o"""er. Furthe. r call s = s(t) the reference
position of the interface at time t (i.e., the position of
the interface as measured in the reference unstrained con-
figuration). Then neglecting small heat transfer effects
due to elongations and assuming insulated attachments at
the ends of the wire, the foregoing considerations imply
the following set of equations for the temperature profile
0(x, t) and the interface s = s(r) in a wire of length Lp.

2h Lp
pcp0, = k0„, ——(0 —0p), 0 ( x (, (1)

[k0 ]+(s(r), r) = —l"s(r), (2)
and

0(x, o) = 0p, s(O) =O, 0, (0, r) =- 0, (Lp/2, r) = O.

(4)

In Eqs. (1) and (2), p is the mass density of the unstrained
wire, c~ its specific heat, and k, h, and r its thermal
conductivity, coefficient of convection of heat, and radius,
respectively. Equations (1)—(4) rellect the experimental
observation in [8] of two interfaces, one starting from
each end (the action of the grips thus appearing as
an agent which favors nucleation). Indeed, symmetry
considerations on a wire of length Lp show that we must
have 0, (Lp/2, t) = 0 at all times.

Provided a constitutive relation for the Maxwell stress
aM such as (8) below is known, and that the stress o. in

Eq. (3) is prescribed in accordance with a given experi-
mental configuration [see, e.g. , Eq. (7) below], Eqs. (1)—
(4) constitute a well defined free boundary problem for
the heat equation. Free boundary problems which, like
ours, contain free boundary conditions allowing for a
range of values of the unknown temperature for ~ = 0
are known in the theory of solidification by the name
of "Stefan-Signorini problems. " (See [14] for an exis-
tence and uniqueness theory for some instances of such
problems. ) Interestingly, in some cases our mathematical
model coincides with those describing certain liquid-solid
phase transitions. Indeed, the free boundary problem as-
sociated with a stress-controlled configuration can easily
be translated into a set of equations which is identical
to that associated with a two-phase solidification prob-
lem where the liquid is initially supercooled; see, e.g. ,

[15—18]. As is known, such equations can lead to pre-
dictions of infinite interface velocities. This is the case
here, as can be seen from Eq. (6) below: that expression
predicts infinite speed and instantaneous transformation
of the whole specimen for certain values of the imposed
stress.

The main new element in our equations, namely the
free boundary condition (3), can be obtained from the

principle of conservation of energy under the following
three assumptions: (1) The constant stress o."v" provides
the only mechanical dissipative process, and this mechan-
ical dissipation occurs at the interface (the complementary
conservative stress o""' is therefore given by o.I'"' =
o. —o."~" at the interface, and by cr()'"' = o- away from
the interface). (2) Strain and energy differences aris-

ing from small elastic deformations caused by the stress
o-"~" in a transforming mass element can be neglected as
much smaller than corresponding differences associated
with the phase change of the element. And (3) temper-
ature changes in a mass element are sufficiently small
that increments QA0 can be neglected as much smaller
than the corresponding changes in the (bistable) specific
Helmholtz free energy h due to the incremental strains:
pAh = —pub, 0 + '""a'6 =ea'""'b, e (Here we have.
denoted by P the specific entropy and by 50 and he the
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temperature and strain changes, respectively, which occur
at a given point in the wire during a time interval ht )N. o-
tice that in the limit of very slow elongations the process
is truly isothermal, and we have $50 = 0.

The conditions (3) follow directly from these assump-
tions. To obtain the first one of these, for example, we note
that assumption (2) implies the relations Ah = h(e, 8)—
h(e', 0) and Ae = e for the energy and strain change in
an element which undergoes the phase transition. Here
e and e' are the strains at which the martensite and
austenite phases can coexist in an equilibrium configura-
tion, and e = e E . (Note that in our dynamic con-
figuration and due to the additional dissipative stress, the
actual strains in the austenite and martensite phases are
different from the corresponding static ones. ) Assump-
tions (1) and (3) then give us p Ah = o-&'"'er, and thus
o-I'"' = o.M where a-M, the Maxwell stress at temperature
0, is given by

as desired.
The free boundary problem (1)—(4) can be used to de-

rive simple expressions in closed form giving observables
such as the width of the hysteresis loops and tempera-
ture changes as a function of the experimental param-
eters. To find these expressions we propose a solution
(0(x, t), s(t)) in the form of a traveling wave in an infi-
nite wire. Let the traveling temperature profile be given
by u = u(x) = 0(x + vt, t) —

Op and s(t) = vt Equa-.
tion (1) now translates into an ordinary differential equa-
tion for the unknown u whose solution is

u(x) = 60e forx ) 0,
60e forx ~ 0,

where A- = 2[—pc„v/k ~ (pc„v/k) + Sh/rk] and
60 = 0;„, —Op. Condition (2) on the jump of the deriva-
tive across the interface then becomes a relation between
the temperature increase and the speed of the interface

e tL p
—2er s(t)o. = tr(s(t), t) = C (7)

during transformation, where C denotes the elastic modu-
lus. From (7) we see that the asymptotic interface velocity
is v = eLp/2er and, using (3) and (6), the asymp-
totic temperature 0"~ and corresponding stress a-"~
can be found. In a stress-controlled experiment, on the
other hand, the value of o. is imposed, e.g. , o. = o.(t) =
o.* (o.* = const ~ 0). In view of Eq. (3), this prescrip-

l v = 60 (pcpv) + Shk/r.

Let us apply this expression to a strain-controlled
experiment, on loading, and with an imposed strain rate

The stress cr in (3) equals

tion implies a value for the temperature which, together
with Eq. (6), gives us the asymptotic values of the veloc-
ity of the interface and thus the associated elongation rate.
These asymptotic calculations provide predictions which
are in close agreement with numerical solutions and ex-
perimental results for a wide range of experimental pa-
rameters.

In Tables I and II we compare results given by Eq. (6)
with corresponding numerical values obtained by integra-
tion of the system (1)—(4) by the method of lines [19,20].
In the strain-controlled case (Table I), we also show ex-
perimental results as reported in [8]. For the small range
of temperatures considered here it is reasonable to assume,
as in [8], a linear dependence of the Maxwell stress on
temperature

(8)

For the experiment under consideration we have Oo =
300 K, ciao + cr"&" = 350 MPa, I 0 = 13 cm, and
7.6 MPa/K. With the exception of h""", the values of
all physical constants we use coincide with those of
[8]. Those values were either taken from the recent
literature as cited in [8] or, in the case of rrp and o."~",
determined from the simple experiments indicated in that
paper. Following [8], and due in part to the uncertainty in
the values obtained for the latent heat of transformation,
we have neglected the small amount of heat introduced
by the dissipative stress o."~", and we have taken l* =
l = 43 J/cm3. The value h""" = 0.089 W/cm K used
in [8], on the other hand, is an engineering value for
the convection coefficient corresponding to a cylinder
submerged in an infinite bath of stationary water. A
How of a thin film of water occurred in the experimental
setup of [8], however, and the authors there chose to
use this value of h ""together with a modified value of
the specific heat which would account for configurational
differences. It appears now that this procedure is not
well justified, that the convection coefficient must be one
which accounts for the actual water How, and that the true
value of the specific heat of the wire must be used, as
we do below. Rough estimates based on consideration
of convection rates for water moving on a heated plate
together with comparison of theoretical predictions and
experimental results lead us to consider the much larger
value h ""= 0.4 W/cm2K used below. The fact that
close agreement was obtained between theoretical and
experimental results for all three values of the strain rate
considered confirms the plausibility of this value of h '"",
whose accurate determination will be left for future work.
Since Eq. (6) is on y exact in the limit of an infinitely
long wire, we include, for comparison, numerical results
corresponding to a wire with Lo = 13 as well as those
given for a much longer specimen (Lp ——6 X 13 cm); in
most cases the differences in predictions associated with
the various lengths are negligible.
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FIG. 1. Theoretical predictions for a strain-controlled exper-
iment of elongation of a NiTi wire of length Lo = 13 cm in
air at three elongation rates eI.O. solid curves, 50 mm/min;
dashed curves, 5 mm/min; dot-dashed curves, 0.5 mm/min.
Left: Strain-stress curves. Right: Temperature profiles corre-
sponding to the half transformation time 2s(t) = 6.5 cm.
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FIG. 2. Same as in Fig. 1, but for the experiments in ~ater.

In Figs. 1 and 2 we show strain-stress curves and
the temperature profiles predicted by our theory. These
curves were obtained by numerical integration of
Eqs. (1)—(4) by the method of lines [19]; comparison
with the experimental curves of [8] again shows good
agreement. The temperature profiles shown on the right
side of the figures are snapshots taken at the time for
which half of the wire had transformed into martensite.

We thank G. Meyer for valuable discussions and
for providing a method-of-line code. Stimulating
conversations with M. Gurtin are also acknowledged.
O. B. gratefully acknowledges support from NSF through
Grant No. DMS-9200002 and through an NYI award

[1] R. Abeyaratne and J. K. Knowles, J. Mech. Phys. Solids
41, 541 (1993).

[2] J.M. Ball and R. D. James, Arch. Rational Mech. Analysis
100, 13 (1987).

[3] K. Bhattacharya and R. V. Kohn, in Proceedings of
the International Society for Optical Engineering [Math.
Smart Structures 1919, 207 (1993)].

[4] J. L. Ericksen, J. Elasticity 5, 191 (1975).
[5] J. D. Eshelby, Proc. R. Soc. London A 241, 376 (1957).
[6] F. Falk, Acta Metall. 28, 1773 (1980).
[7] R. James and D. Kinderlehrer, in Partial Differential

Equations and Continuum Models of Phase Transitions,
edited by M. Rascle, D. Serre, and M. Slemrod, Lecture
Notes in Physics Vol. 344 (Springer-Verlag, Berlin,
1989), p. 51.

[8] P. H. Leo, T. W. Shield, and O. P. Bruno, Acta Metall. 41,
2477 (1993).

[9] F.C. Lovey, A. Amengual, V. Torra, and M. Ahlers,
Philos. Mag. A 61, 159 (1990).

[10] K. Mukherjee, S. Sircar, and N. Dahotre, Mater. Sci. Eng.
41, 75 (1985).

[11] I. Miiller and H. Xu, Acta Metall. 39, 263 (1991).
[12] O. P. Bruno, Smart Mater. Structures (to be published).
[13] T. W. Shield (private communication).
[14] A. Friedman and L. S. Jiang, J. Diff. Equations 51, 213

(1984).
[15] A. Fasano, M. Primicerio, and A. Lacey, Quart. Appl.

Math. 38, 439 (1981).
[16] I.G. Gotz and B. Zaltzman (to be published).
[17] M. E. Gurtin, Quart. Appl. Math. 52, 133 (1994).
[18] B. Sherman, SIAM J. Appl. Math. 20, 555 (1971).
[19] G. Meyer, SIAM J. Numer. Anal. 10, 522 (1973).
[20] J. Crank, in Methods in Heat Transfer, edited by R. W.

Lewis, K. Morgan, and O. C. Zienkiewicz (John Wiley %
Sons, Chichester, 1981), p. 177.

749


