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The origin of self-organized criticality in a model without conservation law [Z. Olami, H. Feder, and
K. Christensen, Phys. Rev. Lett. 68, 1244 (1992)] is studied. The initially periodic and neutrally stable

interior of the system is invaded by a “self-organized” region.

This self-organization is due to the

synchronization of the individual elements with each other. A simplified model of marginal oscillator
locking on a directed lattice explains many of the features in the nonconserved model: in particular, the
dependence of the avalanche-distribution exponent on the conservation parameter « is examined.

PACS numbers: 64.60.—, 05.45.+b, 05.70.Jk, 91.30.—f

The phenomenon of the self-organized criticality (SOC)
[1] is characterized by spontaneous and dynamical genera-
tion of scale invariance in an extended nonequilibrium
system. One of the key issues in this field is to identify
the mechanism(s) of SOC. It has been conjectured that
conservation laws or special symmetries are necessary
[2]. Conservation laws certainly are of great importance
in “sandpile” models [1,3,4], where the scale invariance
can be shown to follow from a local conservation law
[5]. In this sense, the origins of long-range correlations
in SOC systems with conservation are well understood,
though not all exponents have been calculated analyti-
cally. However, models have been constructed [6—11]
that have no apparent conservation law, and yet display
a power-law distribution of avalanche sizes. Of particu-
lar interest is the model proposed by Olami, Feder, and
Christensen (OFC) [9,12,13] which, they argue, models
earthquake dynamics. In this paper, we study in detail
the OFC model and we find that the self-organization is
due to synchronization or “phase locking” —a mechanism
very different from that in the conserved models.

In the OFC model, dynamical “height” variables 4; are
defined on sites i of a square lattice. The h; increase at
unit rate until # = 1 at some location. The site j where
hj = 11is considered to be unstable and will “topple.” The
rule of toppling is that when 4; = 1, then hy — hy + ahj,
for all k neighboring j, and 4; — 0. The toppling on site
j may cause its neighbors to become unstable (k; = 1)
and to topple [14]. This procedure is repeated until all
sites are stable (h; < 1 everywhere). The magnitude of
the avalanche is given by the total “energy” dissipated in
the process, i.e., the total change in >; h;. The avalanche,
which happens instantly on the time scale of driving [15],
is then followed by growth. The parameter « is the
measure of conservation (of A’s). When a = 1/4, the
model is conserved and it is in the same universality
class as for the Bak-Tang-Wiesenfeld model [1,9,16]. We
study here the nonconservative case 0 < a < 1/4.

We find that the system with periodic boundary condi-
tions quickly reaches an exactly periodic state [12], with
a unique period in the slow time. It has been noted
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[9,13] that in the case of periodic boundary conditions,
the avalanche size distribution function drops very quickly
with size. In the case of our modified model, which
prevents two sites from having the same value of 4, all
avalanches consist of the toppling of exactly one lattice
site, after a brief transient time. In a periodic state, the
h;’s take turns to topple, one by one. The height 4 de-
creases by one each time a site topples and increases by
4« due to the toppling of the four neighbors when they
reach 42 = 1. Thus the period of all these periodic states
is 1 — 4« in the slow time variable ¢, so that the slow
“growth” is balanced exactly by the dissipation due to
toppling. These periodic states are highly degenerate and
neutrally stable in the sense that a typical small perturba-
tion of the height at a single site in a periodic state is still
a periodic state. They are similar to the neutrally stable
periodic states in coupled oscillators [17]. There is a con-
tinuous set of periodic states in the attractor, with measure
(1 — 4a)Y in the initial phase space, where V is the sys-
tem volume.

Any inhomogeneity, such as a change in boundary
conditions, destroys such simple periodic states. When
the boundary conditions are open, the system can no
longer have period 1 — 4«, as the boundary sites have
three neighbors (we study a system that is open on one
axis, with the other directions periodic). Initially, the
interior sites quickly converge to a nearly periodic state
and topple with period 1 — 4«, but the boundaries are
aperiodic. At longer times, the aperiodic region invades
the periodic interior, as shown in Fig. 1. This invasion,
which destroys the periodicity in the interior and builds up
long-range correlations, occurs by a mechanism similar to
oscillator locking, as we describe below. The interface
between the two regions is well defined on scales larger
than a lattice constant. The invasion distance appears
to have a power-law dependence on time, y(z) ~ A
as shown in Fig. 2, with 8 = 0.23 = 0.08,0.63 = 0.08
for @ = 0.07,0.15, respectively. We see such invasion
occurring even for values of @ < 0.05, though S8 appears
to be quite small, so that the invasion is extremely slow.
This suggests that the transition to non-SOC behavior
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FIG. 1. Configurations of the Olami-Feder-Christensen model
at various times after random initialization, demonstrating the
invasion of the short-range correlated interior by the “SOC

region.” The color corresponds to the height variables 0 =
h; < 1. The boundaries are periodic in the vertical direction
and open in the horizontal. The lattice consists of 642 sites,
with @ = 0.07. Times are ¢t = (a) 1.2 X 103, (b) 2.4 X 10°,

(c) 6.0 X 10%, and (d) 36.0 X 10°.

claimed by Olami, Feder, and Christensen [9] may only be
apparent, due to the finite time of the simulations; we note
that the time for complete invasion of a 1282 system with
a = 0.07 is greater than 10'° avalanches. In the limit of
long times, when the invasion crosses the whole sample,
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FIG. 2. A plot of the invasion distance vs time for conser-
vation parameters « = 0.07,0.15. Power-law fits are shown
as dashed lines; symbols indicate system size (A = 642, [0 =
1282, and e = 2562).

the distribution P(s; &) of avalanches of size s is a power
law, with

P(s;a) ~ s 7@, (D

Consistent with OFC, we find 7(a) = 3.2 £ 0.1,2.3 *
0.1 for @« = 0.07,0.15, respectively. The avalanches are
not uniformly distributed in the system; the typical
avalanche size grows with distance from the edge [18].
The spatial distribution of length scales is apparent in
Fig. 1(d), which shows an example of a configuration be-
tween avalanches in the steady state. Near the boundaries,
the &; have only short-range correlations, but this correla-

. tion length grows with distance from the boundary. We

define a toppling rate r(y) as a function of distance y from
the boundary, which gives the inverse of the mean time
between topplings. At the boundaries, where the sites
have only three neighbors, r(y) is smaller than the in-
terior, where r(y) — (1 — 4a)~! as y — o. The toppling
rate differential, defined as 8r(y) = (1 — 4a)™' — r(y),
is found to behave as

or(y) ~y~ 7, 2

with n = 3.2 + 0.6,1.8 £ 0.2 for @ = 0.07,0.15, respec-
tively. Let h,(y) be the average height just before
toppling, R(y) = (1 — 4a)r(y)h,(y) is then the dissipa-
tion rate and R(y) — 1 as y — . It can be shown
that in the steady state §R(y) = 1 — R(y) behaves as
S8R(y) = exp{—y[(1 — 4a)/a]'/?}. Thus the dissipation
rate is rather uniform except within a boundary layer of
thickness [a/(1 — 4a)]'/2. The power-law behavior of
Eq. (2) must be compensated by a power law in 8k,(y) =
h(y) — L:

Sh(y) ~y . 3)

In order to gain some insights on the buildup of
long-range correlations in the inhomogeneous system, we
consider a system which has only two sites: h; and h,.
Let us first consider the homogeneous case: both 4, and
h, are driven with unit rate and when one of them reaches
the value one it topples. The rule of toppling is that if
hi2 = 1, then hyq)y — hyq)y + ahy) and Ay — 0. This
small system has a continuous set of periodic states which
are marginally stable. To illustrate its dynamics, we
construct a Poincaré map. Denote 4;(r) to be the value
of h; right after the nth toppling of h,. It is easy to show
that [12]

a = hi(n) <lI,
1=h()<1l/a, @

{hl(n)v
hiin+1) =11+ a — ahi(n),
hi(n) = 1/a,

a’hy(n),

which is sketched in Fig. 3(a). We see that there is a
line of marginally stable fixed points A € [a,1). These
fixed points are periodic states with period 1 — «: h; and
h, take turns to topple and the toppling of one site will
not trigger the toppling of another (] < 1). Now, we
introduce a small inhomogeneity. We drive 4; with rate 1,
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FIG. 3. Return map for the two-site system: (a) homogeneous
system; (b) inhomogeneous system.

but 4, with a slightly slower rate (1 + €)~!. The Poincaré
map now reads

hl(l’l + 1) ==
{hl(n) + e(l — a),

a = hn) <1,
l1+a+e—all +ehn), 1=hh <1l/a, 5)

a’hy(n), hi(n) = 1/a,

which is sketched in Fig. 3(b). In this case, there is
only one fixed point 4] = 1 + (1 — «)/(1 + a). This
fixed point is the phase-locked or synchronized state: the
toppling of h, will trigger h; to topple (h; > 1). Note
that Eq. (5) is only € away from Eq. (4), so the locking
is rather weak and fluctuations can play a crucial role.
In the OFC model with open boundary conditions, the
boundaries introduce inhomogeneity. The sites at the
open boundaries have only three neighbors and hence
have a slower effective growth rate. This inhomogeneity
in the effective growth rate propagates into the interior
of the sample, causing phase locking and thus long-
range correlation. However, the whole system is not in a
synchronized state. Rather, it is only “marginally” locked
so that it gives a power-law distribution of avalanche
sizes.

We do not have a complete theory for the emergence of
the “marginal locking” in the OFC model. However, we
can abstract some of the features to construct a simpler
model which also exhibits SOC. This model is defined
on a directed lattice to simplify avalanches. We define
dynamical variables 0 = ¢; < 1 as the phase of the next
toppling time of a site; this phase is related to the height A;
in the OFC model at a fixed time. At random sites on the
boundary, we initiate a toppling which changes the phase
according to ¢; — ¢; = ¢; + a. If the phase ¢; at a
neighboring “downhill” site j = i + % or i + § (see inset
in Fig. 4) meets the locking condition (¢; — ¢; modl) <
a, the site j locks onto the boundary site, with ¢; — ¢;.
This disturbance can then continue to propagate by sites
further from the boundary, becoming locked in zero time.
We refer to this locking as marginal since neighboring
phases only lock upon a crossing in the toppling time;
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FIG. 4. Domains in the simplified SOC model described in
the text, for a 200? directed lattice. (a) Configuration with
domains of identical toppling times indicated by solid lines.
(b) Configuration after an avalanche, with previous domains
indicated by dashed lines. The inset sketches the directed
lattice.

the configuration is neutrally stable with respect to a
continuous set of perturbations. This model differs from
the OFC model most notably in the directed lattice and
the instantaneous locking (avalanches in OFC occur in
zero time, but locking occurs over a period of time).

A snapshot of the ¢; in the steady state is depicted
in Fig. 4(a). The domains, bounded by solid lines, are
regions where the toppling times are identical. Fig-
ure 4(b) shows a configuration after an avalanche, with
the dotted lines showing the previous domain configu-
ration. An avalanche crosses domain boundaries only
when the neighboring domains have times that differ
by no more than «. Numerically, it is found that the
number of domains n(d) of size d at a fixed time has
a power-law tail that is independent of «, n(d) ~ d 7,
with o = 1.495 = 0.005. Yet the avalanche distribution
has an a-dependent exponent, with the probability of an
avalanche of size s behaving as P(s) ~ s 7@ (Fig. 5).
Note that domains and avalanches are closely related, with
avalanches defining domains. The exponent o must sat-
isfy the bound o = 3/2; the fact that our numerical result
saturates this inequality, to within numerical error, sug-
gests that the average width of a domain is proportional to
the length of the domain perpendicular to the boundary.

The «-dependent relationship between 7 and o can
be approximately explained. Assuming that the toppling
times of neighboring domains are independent variables,
the probability of an avalanche, which starts in one do-
main, incorporating a given neighboring domain (i.e.,
crossing the domain boundary) is just «. The incorpo-
ration of a neighboring domain increases the avalanche
size to the scale of the neighboring domain, typically
larger than the scale of the original domain. Assuming a
scale independent probability a’ « « that the avalanche
does not stop at a domain wall, the avalanche distribu-
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FIG. 5. The avalanche distribution exponent 7(«) for the
directed model as a function of the conservation parameter «.
The linear fit is discussed in the text.

tion is broader than the domain distribution and is «
dependent. This can be seen by considering the distri-
bution of the logarithm of the avalanche sizes N;(Ins).
The distribution of the logarithm of domain sizes be-
haves as Ny(Ind) ~ exp[—(o — 1) Ind]. An avalanche
terminates when the edge of a domain is reached, which
happens at “rate” o — 1, considering Ins as time, and
the avalanche is stopped at this edge, which happens
with probability 1 — «’. The total avalanche termi-
nation rate as Ins increases is (o — 1)(1 — a’), giv-
ing Ny(Ins) ~ exp[—(o — 1)(1 — &’) Ins]. This results
in the avalanche distribution P(s) ~ s~7®, with 7(a) =
o — a'(oc — 1). This is in agreement with the linear fit
of Fig. 5, with a’ = (1.20 = 0.04)«; the fitted value of
7(0) = o = 1.505 = 0.005 agrees with the value deter-
mined by the domain distribution.

In this paper we have examined how SOC can arise
in a model without a conservation law. The OFC model
with periodic boundary conditions has a continuous set
of neutrally stable periodic states. In general, inhomo-
geneity destroys these periodic states and causes phase
locking which is the building block for long-range cor-
relations. We found that an open boundary results in the
invasion of the interior by a marginally locked region in
which the avalanche size distribution is a power law. A
simplified model on a directed lattice has been used to
demonstrate how an «-dependent avalanche size distri-
bution exponent can arise in such nonconserved dynami-
cal models. We note that the OFC model is similar to
the coupled “integrate-and-fire” oscillators studied in the
context of neural networks and biology. A close cousin
is Peskin’s model for the cardiac pacemaker [19]. We
found that the model in 2D with nearest neighbor cou-

pling tends to lock into some periodic or “quasiperiodic”
cluster state and that it has richer behaviors than simple
synchronization. It would be interesting to further inves-
tigate the relationship between the OFC model and neural
network models.
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FIG. 1. Configurations of the Olami-Feder-Christensen model
at various times after random initialization, demonstrating the
invasion of the short-range correlated interior by the “SOC
region.” The color corresponds to the height variables 0 =
h; < 1. The boundaries are periodic in the vertical direction
and open in the horizontal. The lattice consists of 647 sites,
with @ = 0.07. Times are t = (a) 1.2 X 10°, (b) 2.4 X 10%,
(c) 6.0 x 10°, and (d) 36.0 X 10°.



