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Emission of Submillimeter Electromagnetic Waves by Coherent Phonons
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We report on the first observation of the emission of electromagnetic radiation from coherent lattice
vibrations in a semiconductor. Coherent optical phonons are excited by ultrashort laser pulses in single-
crystal tellurium. THz frequency radiation emitted by the Dember-field-driven phonons is detected by
time-resolved THz-emission spectroscopy. The measurements are complemented by optical pump-probe
experiments with a polarization-sensitive detection scheme utilizing the symmetry of the Raman tensor.

PACS numbers: 63.20.—e, 42.65.Re, 78.47.+p

The investigation of coherent phonons in solid-state
materials excited with ultrashort laser pulses is a sub-
ject of great current interest. In recent years, coherent
phonons have been observed in the transient optical re-
flectivity and in the transmission of several semiconduc-
tors [1—3]. For a certain class of materials including Te,
only coherent optical phonons of A] symmetry have been
detected in femtosecond time-resolved experiments [2],
although modes of different symmetry have been identi-
fied in cw-infrared (IR) reIIectivity and Raman scatter-
ing experiments. The selective excitation of A] modes
has been explained by a displacive excitation mechanism,
in which a strong interband excitation leads to an ultra-
fast displacement of the atomic equilibrium position [2,4].
We present a detailed study of coherent phonons in Te. In
addition to the A& mode, phonons of F symmetry are ob-
served in time-resolved measurements of the anisotropic
reIIectivity changes (RC), obeying selection rules given
by the symmetry of the Raman tensor. Since all phonons
in Te of symmetry different from A] are IR active, their
coherent excitation is expected to be accompanied by the
emission of electromagnetic radiation. In this Letter, we
report on the first time-resolved observation of THz emis-
sion that originates from the macroscopic polarization as-
sociated with coherent longitudinal optical (LO) phonons.
The radiation is detected with THz-emission spectroscopy
that allows the direct measurement of the amplitude and
phase of the coherent electromagnetic radiation emitted
after pulsed optical excitation [5].

The IR activity of phonons in the single-element semi-
conductor Te arises from the strong electronic polarizabil-
ity and the lack of inversion symmetry [6]. Te crystallizes
in a hexagonal lattice (space group D3 or Dq) consisting

of three atoms per unit cell arranged in a helix along the c
axis. The lattice vibrations consist of a fully symmetrical,
only Raman-active A& mode (3.6 THz), two degenerate
Raman- and IR-active E modes (ETolLo 2.76/3. 0. 9 THz,
ETolLo .'4.22/4. 26 THz), and one only IR-active A2 mode
(Ag ToILo'. 2.6/2. 82 THz) [7]. The internal polarization is
either perpendicular (E modes) or parallel (A2 mode) to
the c axis. All experiments are performed on two differ-
ent Te single crystals with the c axis perpendicular (cJ )
and parallel (c ~I) to the surface.

To prove the excitation of coherent phonons differ-
ent from the A] mode, we perform optical pump-probe
measurements and detect the anisotropic RC. The laser
source is an unamplified colliding-pulse mode-locked
(CPM) laser delivering pulses with 2 eV photon energy,
50 fs pulse duration, and 20 pJ energy per pulse. The re-
flected probe beam is split with a polarizing beam splitter
into two orthogonally polarized components R, and RI„
where j and k denote the orientation of the polarization
in the Cartesian system of the crystal. The intensity dif-
ference AR, —ARq is recorded as a function of time de-
lay [1]. To enable a high-resolution determination of the
phonon frequencies, we also measure the time derivative
of the RC [8].

The manifestation of phonon modes in the anisotropic
RC results from the modulation of the dielectric suscepti-
bility by the coherent lattice vibration with amplitude Q.
A perturbative expansion in Q and truncation after the
first term allows us to express the anisotropic RC as fol-
lows: ARI —b Rk —E~ (Iig/BQ)E'Q —Ek(dg/6Q)E'Q,
where E' and E' are the incident and reflected probe
fields, respectively. (B~/BQ)l& denotes the Raman ten-
sor, which contains the following nonzero elements [7]:

E(x): (&X/~Q)..= —(~Z/~Q), y
= c, (~X/dQ)y, = (~X/~Q), Y

= d,

E(y): (~X/~Q); = (~X/~Q), - = —c; (~Z/~Q)- = (~X/~Q). (2)
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coupling of the longitudinal Dember field with the LO
phonon gives rise to an amplification of the field at the
LO frequency and a strong reduction of the field at the TO
frequency. Such effects have also been predicted for the
case of THz emission by coherent LO phonons in GaAs
[15]. We observe emission at the phonon frequencies and
not at other frequencies from plasmon-phonon coupled
modes [15), although the average plasmon frequency is
close to the optical phonon frequencies. We explain
the absence of plasmon-phonon coupled modes from the
strong inhomogeneity of the carrier density resulting from
the extremely short absorption length.

The above interpretation of THz emission by phonons
is verified by excitation of the c ~~ surface (not shown).
The Fourier spectrum of the THz emission looks qualita-
tively the same as for the c J surface. Now a dip in the
spectrum is observed at 2.7 THz and a peak at 3.1 THz,
which are close to the ETo and the ELo mode, respec-
tively. In this case, the internal polarization of the ob-
served phonon mode is again oriented perpendicular to
the excited surface. At this surface, the Raman- and IR-
active ELo is observed in both, the THz emission and the
anisotropic RC. The E" mode is not observed, as it is
above the frequency detection limit and has only a weakly
polar character.

Finally, we discuss the relevance of (i) propagation and
(ii) out-coupling effects of the THz radiation. The
buildup of the Dember field driving the coherent LO
phonons is itself associated with the broadband emission
of radiation. (i) The propagation of the transverse elec-
tromagnetic radiation at frequencies close to an optical-
phonon resonance can also lead to a spectral modulation
of the THz radiation [16]. This propagation effect can be
neglected, since the thickness of the emitting region of
approximately 30 nm is much shorter than the absorption
length of the THz radiation, which is larger than 1 p, m
at the FTo frequency. (ii) The out coupling of the THz
radiation from the crystal into air is influenced by the
strong wavelength dependence of the refractive index
at the phonon resonance. Assuming equal radiation
intensities at the LO and TO phonon inside the crystal,
impedance matching leads to a higher radiation intensity
at the LO than at the TO frequency outside the crystal.
However, calculations show that this effect by itself
cannot explain the high electric field amplitude at the LO
frequency and the total absence of radiation at the TO
frequency observed in our experiments.

In conclusion, we report on the coherent excitation of
optical phonons in single-crystal tellurium. All Raman-
active phonon modes are observed in either the isotropic
or the anisotropic time-resolved reAectivity changes in
agreement with the symmetry of the Raman tensor. For
the first time, we apply time-resolved THz emission
spectroscopy for the investigation of coherent IR-active
phonons. The THz emission by phonons of A2 and E
symmetry is observed. The observation of the emission

of light from coherent phonons opens a new field in the
investigation of lattice dynamics.
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