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Nonlinear Instability Mechanism in 3D Collisional Drift-Wave Turbulence
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Numerical simulations of 3D collisional drift-wave turbulence reveal a behavior basically different
from that found in previous 2D studies. The linear instability saturates due to energy transfer to small

k. leading to the formation of convective cells. The turbulence is sustained by nonlinear transfer
processes between k. = 0 and k. 4 0 modes, the latter acting as a catalyst. The system tends to relax
to a nonturbulent poloidal shear How.
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where v = (c/Bo)i X Vp, co = V~ p, no is the back-
ground electron density, and no = —no/L„~ 0 the mean
density gradient assumed along the negative x direction.
The parallel electric current density jII is obtained from
Ohm's law
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where rt = v„/co„, is the resistivity. Introducing the stan-
dard drift-wave normalizations p (eq /T, ) L„/p„n
(nlno) L /p, t tc / L, Vi p. Vi, Vll

PACS nuITIbers: 52.35.Ra, 52.35.Kt, 52.35.Mw

Two-dimensional approximations are often used in
turbulence studies primarily because they can be treated
numerically with much higher resolution than the fully
3D equations, though the physical properties of the 2D
system may be basically different from the 3D behavior,
the best known example being Navier-Stokes turbulence.
On the other hand, incompressible rnagnetohydrody-
namic turbulence shows a rather close relationship
between 2D and 3D [I], in particular, in the presence
of a strong magnetic field, which introduces anisotropy
making the turbulent dynamics quasi-two-dimensional.
A similar situation arises in drift-wave turbulence in
an inhomogeneous magnetized plasma, i.e., small-scale
(compared with the average density gradient scale length)
density and electric potential fluctuations, which are
believed to play an important role in the transport be-
havior of magnetically confined plasmas. Because of
the basic anisotropy with respect to the magnetic field,
two-dimensional modeling of drift-wave turbulence
appears to be a good approximation. We will, however,
show that this is generally not the case, using the simple
system of collisional drift waves in an unsheared mag-
netic field introduced by Hasegawa and Wakatani [2].
Neglecting ion temperature effects, this model consists of
two equations for the electric potential p and the density
fluctuation n, the ion equation of motion
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and the electron continuity equation

with LII a typical parallel wavelength or correlation length,
Eqs. (I) and (2) become
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where I = f nv, dV = —f nA&, tpdV is the volume-
integrated turbulent plasma flux. Only the I term may
be positive and hence drive the turbulence by extracting
energy from the (fixed) mean density gradient.

Studies of the Hasegawa-Wakatani (HW) equations (4)
and (5) have previously been restricted mainly to two-
dimensional geometry [3—5] by assuming Vll

—k
l

=
—k~ to be a constant, proportional to the so-called adia-
baticity parameter C (large values of C enforce a nearly
adiabatic behavior of the density, n = @, whence the
name). For sufficiently weak viscous dissipation the last
term in Eq. (6) is found to be negligible, such that I and

Here the coefficients in the parallel diffusion terms on the
right-hand sides have been chosen as unity, which defines
the parallel scale length LII,

Lll = (L„T,/m, c, v„)'t .

D" and D' represent perpendicular viscous dissipation
effects, which in the present context should only guarantee
regularity of cp, n. Since we want to localize these effects
at the smallest scales, D",D' are rather arbitrarily—
chosen as D = p~V~ ~, D" = vV& n, with p, = v.(6) „ (6)

The nonlinear terms v - Vcu and v . Vn conserve the
kinetic energy E~ = f v2 dV and the energy of the den-
sity fluctuations E~ = f n2dV, respectively. Switching
on the remaining terms the following quadratic forms of
n and p behave in a particularly simple way, the total en-

1

ergy E =
2 f(v2 + n2) dV and the generalized enstrophy

W =
2 f(n —to)2 dV, which follow the equations
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resistive dissipation balance each other in stationary turbu-
lence, while the viscous term in Eq. (7) remains finite. The
spectral properties of stationary 2D HW turbulence have
recently been studied for a broad range of C values [4,5].
In all cases one finds a maximum of the angle-integrated
energy spectrum Et, = jEk dAk at k = ko, where ko ——1

for C —1, and ko decreases for both decreasing C, where
ko = k, the mode of maximum linear growth rate, and for
increasing C, where ko ( k . Hence in 2D the HW sys-
tem does not exhibit an inverse cascade and condensation
at small k, contrary to the behavior of the Hasegawa-Mima
equation [6], to which the HW equations reduce in the limit
C ~, i.e., n p. This can be understood in the sense
that for the stationary spectrum k 0 in this limit. Since
for larger C the system needs longer and longer times to set
up a stationary spectrum down to k, this corresponds to an
inverse cascade in the limit C ~. Because of the rather
arbitrary choice of k, = const and the strong dependence
of the system on the parameter C, it is interesting to con-
sider the 3D HW system, where there is no free parameter,
the k, spectrum being determined self-consistently. It is
shown in the present work that the 3D behavior is basically
different from that of a 2D finite-C system, the nonlinear
energy transfer in k, playing a dominant role.

Several studies of 3D drift-wave turbulence have pre-
viously been performed. In Ref. [7] collisionless drift-
wave turbulence was investigated by particle simulation.
It has been found that k, 0 0 drift waves lead to ex-
citation of k, = 0 convective cells. However, since the
mean density profile is not kept constant, quasilinear ef-
fects prevent the setup of a quasistationary turbulence
level, and the spatial resolution used is relatively low.
In Ref. [8] the HW equations were solved in a cylindri-
cal plasma including magnetic shear and curvature. The
main result was the generation of a poloidal shear Aow.
As we will see, this behavior is already described by
the simple slab model ignoring magnetic shear and cur-
vature, where k, =

k~~
= 0 modes (interchange modes or

convective cells) are linearly stable, but are excited by
the nonlinear transfer processes.

The 3D HW equations (4) and (5) are solved in a
rectangular box of size 27TL && 27TLy && 27TLz with pe-
riodic boundary conditions using a pseudospectral method
according to the 2/3 rule. The number of modes (or
collocation points) are N, = N, ,

= 96, N, = 48, and the
hyperviscosity p, = 10 4, which is small enough to con-
centrate dissipation at high k in the energy and enstro-
phy spectra, but still prevents spectral accumulation at
high k. Modes are linearly unstable for k, 4 0 and suf-
ficiently small k& and stable at large k& due to viscous
damping. For the parameters given above the maximum
growth rate y „=0.15 is found at k = 0, ky

——1, and
k, = 0.5. (For details of the linear stability properties see,
e.g. , Ref. [3].) In these 3D computations spatial reso-
lution is necessarily smaller than in previous 2D runs
[4,5], where up to 1024~ modes have been used. There-
fore the focus is not on small-scale spectral properties but

on the dynamics of the dominant large-scale eddies. In
our standard case the dimensions of the computed sys-
tem are L, = L,,

= 6, which is large enough to allow for-
mation of structures ))p, (k~„„„p,= 0.16). The parallel
dimensions L, = 6 are chosen such as to locate the most
unstable mode in the lower half (n, = 3) of the k, spec-
trum. The time step At is determined by the requirement
that the energy balance (6) be satisfied with sufficient ac-
curacy. A typical run is illustrated in Fig. l. The initial
state is given by a low level random noise of pk and
nk. Owing to the linear instability the fluctuation energy
grows exponentially up to time t = 70, when nonlinear
effects lead to a bendover. We can identify the nonlin-
ear (quasi)saturation mechanism by considering the en-
ergy spectrum E(k, ) = g„, Ek, shown in Fig. 2. During
the linear instability the spectrum E(k, ) has a maximum at
k, —0.5, but for t ) 70 the maximum of E(k, ) is shifted
to smaller k, . Hence the bendover is due to a nonlin-
ear transfer in k, from the linearly most strongly driven
modes to weakly or nondriven ones leading to the forma-
tion of convective cells. The properties in the nonlinear
phase are illustrated by the transfer rates of kinetic and
density fluctuation energies,

T (k, ) = Re g z (k x k')k" pk pk k p, ,
k Lk'

T (k) =Re g z (k X k')nkpk kn

(8)
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FIG. 1. Time evolution of (a) the total turbulence energy E,
the drift-wave energy E(k, 4 0), and the turbulent Ilux I .
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FIG. 2. Energy spectrum E(k, ) in the linear instability phase
t = 60 and in the nonlinear phase t = 100.
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plotted in Fig. 3 for t = 240, a typical time in this
nonlinear phase. Since T~(0) ( 0, there is a strong
transfer of EI, from k, = 0 to k, 4 0, where T (k, )
is almost uniformly distributed and thus drives a broad

spectrum of rather high-k, modes. On the other hand,
one finds an inverse transfer of kinetic energy E& from
high to small k„ in particular to k, = 0. Hence in
contrast to the linear instability the turbulence energy is
primarily generated by the convection of the density at
k = 0. Since there is no linear coupling to the potentialz

at k, = 0, a nonlinear process involving k, 4 0 modes
is needed, the latter acting as a kind of catalyst. In
this nonlinear process both convective cells E(k, = 0)
and drift waves pk ~o E(k, ) are growing. The nonlinear
process is illustrated in Fig. 4. Large-scale convective
cells drive k, = 0 density fluctuations at broad scales k&.
These excite k, 0 0 drift waves, which in turn reinforce
the convective cells. For k, 4 0 the k& spectrum still
follows roughly the behavior of the linear growth rate with
a maximum at finite k&. It is interesting to note that only
for k, » 1, k& « 1 the fluctuations are nearly adiabatic
nq = pj, . While for k, «1, k~ «1 one finds yk && nk,
density fluctuations dominate nk » pk for k„k& ~ 1.

In the state dominated by large-scale convective cells,
which give rise to strong energy fluctuations (t = 240—
280), there is the tendency of condensation to the ky: 0
mode corresponding to a poloidal shear fIow. The mech-
anism is related to that described in Ref. [9j. A main
feature of this process, which occurs at t = 280, is the
quenching of the nonlinear instability described above,
since the driving force I ~ k~ in Eqs. (6) and (7) (cor-
responding to the vertical arrow in Fig. 4) is switched off.
The small-scale drift-wave turbulence decays, since dis-
sipation now exceeds the reduced nonlinear transfer rate.
As the result the system relaxes to a quasilaminar sta-
tionary poloidal flow. (It should be noted that because
of the nonuniform velocity shear the essentially sinu-
soidal fIow profile has two points of vanishing shear —the
turbulence does not decay to arbitrarily low amplitudes.
Assuming a fixed sinusoidal shear flow results in a sta-
tionary rather low nonlinear level of drift waves located
around these points. )

In the present model system imbedded in a homoge-
neous magnetic field the poloidal shear flow is Kelvin-
Helmholtz unstable, if the aspect ratio fo the computa-
tional box LY/L, exceeds unity. Hence for L~/L, ) l
the poloidal shear How cannot be set up. Instead the
system settles into a turbulent shear flow state in the x
direction (k„= 0), which is possible because of the pe-
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FIG. 3. Density and kinetic energy transfer functions
T~(k, ), T~(k, ) in the phase of strong turbulence t = 240.
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FIG. 4. Schematic illustration of the nonlinear instability
mechanism.
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FIG. 5. Time evolution of I" for the same run as shown
in Fig. 1, continued at t = 400 with a shear How damping
n=10

riodic boundary conditions used. In this case I is not
switched off, the nonlinear instability remains active giv-
ing rise to continued growth of both convective cells and
drift waves. Since in a tokamak plasma the poloidal shear
flow is Kelvin-Helmholtz stabilized by the poloidal mag-
netic field [10], we concentrate on the case L~/L, ~ 1,
where the poloidal flow is stable.

In a real toroidal plasma column a poloidal flow
is damped collisionally due to magnetic pumping [11].
Modeling the effect we introduce at t = 400 a damping
term —ntok into Eq. (1) for modes with either k~ = 0 or
k = 0. We find that during the period t = 400—440 the
shear flow decays to a low amplitude, which reintroduces
the turbulent flux I and in its wake the drift wave
turbulence. The dynamic state is similar to that in the
first turbulent phase t = 200—280 and terminates by the
regeneration of a poloidal shear flow state, which again
suppresses the nonlinear instability and the turbulent flux.
This behavior of alternating periods of shear flow and
turbulence, appearing in a burstlike manner, continues;
see Fig. 5.

In conclusion, we have shown that 3D collisional drift-
wave turbulence is basically different from the behav-
ior of a 2D system with a given adiabaticity parameter
C. The turbulence is not driven by the linear instabil-
ity mechanism, but by a nonlinear process. Large-scale
convective cells excite k, = 0 density fluctuations. From

these fluctuations energy is transferred to a broad spec-
trum of k, 4 0 drift waves, where the energy is partly
dissipated and partly transferred back to the convective
cells. There is an inherent tendency to generate a shear
fiow, either in poloidal direction (k,, = 0), or, if this fiow
is Kelvin-Helmholtz unstable, in radial direction (k,. = 0).
In the case of a poloidal shear flow the turbulent flux I is
switched off leading to rapid turbulence decay. Introduc-
ing an explicit damping of the shear flow, representing the
effect of magnetic pumping in a toroidal plasma column,
generates an intermittent turbulent state, where laminar
periods of almost zero flux alternate with turbulent peri-
ods of large flux. The transitions occur very rapidly on
time scales shorter than the linear growth times. This be-
havior may be related to the grassy ELM's [12] observed
in tokamak plasmas.

The authors are grateful to Dr. J. Drake for several
useful discussions.
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