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Helicities of Electron Magnetohydrodynamic Currents and Fields in Plasmas
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Transient plasma currents are excited with pulsed electrodes in a large laboratory plasma in a
parameter regime characterized by electron magnetohydrodynamics (cu,,' « t~„~„/2m&&. cu, , '). The
combination of Hall currents and field-aligned currents gives rise to three-dimensional vortices whose
helicity is manifested by linked and knotted current and field lines. The relation between magnetic
helicity, f A B dV, current helicity, fJ B dV, and their transport properties are investigated.

PACS numbers: 52.35.Hr, 52.30.Bt, 52.40.Db, 52.70.Ds

The topology of magnetic fields in plasmas is a topic
of fundamental importance in fusion and space plasmas.
While the attention is commonly focused on magneto-
hydrodynamic (MHD) plasmas [1], more recently the
regime of electron MHD (EMHD, i.e., magnetized elec-
trons, unmagnetized ions) has become of interest with its
many applications such as plasma opening switches, elec-
trodynamic tethers, and plasma releases in space [2—5].
In EMHD, Ohm's law is dominated by electron Hall cur-
rents. Under such conditions, the fields frequently have a
three-dimensional (3D) topology, which rarely have been
measured and compared to theory. One method to quan-
titatively describe the field topology of a 3D vector field,
V X X, is through its helicity, H = f X . (V X X) d V
[6]. It is a measure for linkage and knotting of field
lines, as well as for internal twisting and kinking of
flux tubes. Magnetic helicity, f A B dV, is conserved
for frozen-in B fields in ideal plasmas, as is the fluid
helicity, f v (V X v) dV, in ideal hydrodynamics [1]. In
certain nonideal plasmas, Taylor [7] conjectured that
magnetic helicity remains constant while the magnetic
energy decays. In this Letter, we measure the helicities
of the vector fields V X A = B and V X B = p, oJ =
—n, ev„and explain their transport properties via
Maxwell's equations and Ohm's law appropriate to
EMHD. The vector potential A and current density J are
derived from direct probe measurements of B(r, t) at more
than 10000 positions in a simple basic physics experi-
ment: A pulsed current is drawn to a positively biased
disk electrode inserted axially into a large, uniform, qui-
escent magnetoplasma. In the present parameter regime
(co„,» co„»to = 2n. /t~„~„&&co„),the current pulses
are transported by low frequency whistler wave packets
[8], as demonstrated by Fourier transforming B(r, t) to
B(k, co), and observing the spectral distribution to lie
on the refractive index surface of oblique whistlers [9].
Both B and J exhibit positive helicity due to right-handed
linkage of azimuthal Hall currents and field-aligned
currents. The latter close like the fields of a short
solenoid, such that the resultant topology is that of a 3D
vortex (Hill's vortex, spheromak [10]). Trefoil knots
are observed in lines of A, B, and J. During the pulse
propagation, both energy and helicity decay at the same
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FIG. l. Experimental setup, parameters, and pulsed currents
in a magnetoplasma.

rate, but the normalized helicity (e.g. , J . B/JB = cosy)
remains constant. Hence, the topology does not change.
Helicity transport studies show that magnetic helicity is
volume generated, while current helicity is injected by
the electrode. Dissipation is by collisions rather than
Landau damping as in helicons [11]. On time scales
short compared to diffusion times, the magnetic field is
shown to be frozen to the electron fluid (B ~ J ~ v, ).
The electromagnetic fields exert essentially no force on
the electron fluid, f = n, eE + J X (B + Bo) = 0 [12].

The experimental setup sketched in Fig. 1 consists of
a large (1 m diam X 2.5 m length) afterglow plasma
column (n, = 9 X 10'0 cm 3, kT, = 0.8 eV, Bo = 10 G,
Ar, p„=3 X 10 ~ Torr) into which a disk electrode
(4 cm diam) with an insulated shaft is axially inserted. A
positive current pulse (t~„~„=150 ns, I,„=50 mA) is
applied using the chamber wall as the ion collecting re-
turn electrode. With a triple magnetic probe (1 cm diam)
movable in three dimensions, the time-dependent mag-
netic field (B„,BY, B,)(x,y, z, t) is recorded from repeated
experiments in the central plasma volume (26 cm J Bo,
55 cm ~~ Bo) with At = 10 ns time resolution and digi-
tally stored. The current density is calculated from
Ampere's law, J(r, t) = V X B(r, t)/po, where J i,ncludes
the negligible vacuum displacement current (eo (BE/at( /
~J( = etjtoE/oHE = toto„/to„,= 10 5, when Hall cur-
rents dominate as shown below). The current penetrates
from the electrode into the plasma along Bp at a charac-
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FIG. 2. Field topology of EMHD current pulses. (a) Snapshot
of the vector potential field, A(r, t = 0.3 p, s), displayed as unit
vectors in two orthogonal planes (third coordinate indicated
by adjacent diamonds). The toroidal field in the transverse
x-y plane is due to Hall currents. The solenoidal field in
the center of the y-z plane is due to field-aligned currents
excited earlier by the electrode. Both fields are linked to form
a 3D vortex. A similar topology exists for B = V' x A and
J = 7' X 8/tu, p. (b) Typical field lines of A, 8, and J in the
main vortex (z = 30 cm) displayed as "sheets" (two adjacent
lines connected by a surface) or "tubes" (four lines started on
the corners of a square, connected by sheets). The fields are
internally twisted, knotted, writhed, and linked with other lines
(not shown for clarity), i.e. , they exhibit helicity.

teristic wave speed (v~~
= v h;„I,„=1.4 X 10 cm/s) and

closes via induced return currents to the chamber wall.
The collection of electrons from the Aux tube of the elec-
trode leads to a radial space charge electric field, which
gives rise to azimuthal Hall currents because ion E && Bo
drifts are negligible in EMHD. When the applied current
pulse has ended, the plasma current lines detach from the
electrodes, close within the plasma volume, and propagate
along Bo with little spread across Bo.

Figure 2 presents a snapshot of typical field topologies
at a time after the end of the applied current pulse. At this
time, the perturbation has propagated to the middle of the
measurement volume. The vector potential A obtained by
solving V X A = 8 in 3D k space (V A = 0, Coulomb
gauge) is displayed in Fig. 2(a) as unit-vector fields in two
orthogonal planes. An axial, solenoidal field is visible in
the central y-z plane (x indicated by adjacent diamond),
which is linked by an azimuthal (toroidal) field in the
x-y plane (z shown by diamond). A typical "field line"
of A of the combined 3D vortexlike field is shown in
Fig. 2(b). It is knotted and twisted. Trefoil knots [1] are
also observed in magnetic Aux tubes and current density
tubes because the field topologies of A(r), 8(r), and J(r)
are observed to be similar. This can be shown to be true
to first order. Defining cu„=eBII/m„Ohm's law can be
written as

m, (lJX~„+ +vJ
n, e2 l Bt )

8 = J/&H v)] V X J/&AH m~e .

Since V . A = V 8 = 0, inspection of Eq. (3) yields

A = 8/tuoorHvii —J/o Htu«, (4)

where o.H = n, e/Bo is the Hall conductivity. Hence, to
first order A(r) ~ 8(r) IX J(r).

The helicity density of the J field, h = J B(x =
O, y, z;t = 0.3 p, s), shown in Fig. 3(a), exhibits a large
positive pulse in the center, followed by smaller sec-
ondary pulses, which are induced by the primary vortex
[also visible in Fig. 2(a)]. The magnetic helicity den-
sity, A . B, has a similar distribution. When integrated
over the transverse cross section, 0J 8 dx dy, axial
propagation and decay of helicity can be observed for
the different pulses in a z tdiagram [F-ig. 3(b)]. The
first pulse carries most of the helicity, propagates at
v~~

= 1.4 X 10s cm/s, and decays within the volume. The
typical amplitude decays along the propagation charac-
teristics (line between diamonds, z = v~~t') is shown in
Fig. 3(c). Magnetic energy (dashed line), current helicity
(solid line), and magnetic helicity (not shown for clar-
ity) decay at the same rate, since A(r) IX B(r) IX J(r), as
shown above. However, the suitably normalized helicity,
ffJ 8 dx dy/ ff JB dx dy, is constant and close to unity,
indicating that the average angle between the vectors does
not change. Thus, the topology does not change as the
helicity decays.

Finally, integration along z of the data presented in
Fig. 3(b) yields the total helicity in the measurement
volume, H = f h dV. This is shown in Fig. 4(a) for the
magnetic field helicity and in Fig. 4(b) for the current
density helicity (or electron fluid velocity). The temporal
growth and decay of helicity during the passage of pulses
through the volnme can be analyzed for the helicities
analogous to that of the energy, i.e., through Poynting's
theorem (I)U, /I3t = —f~ S da —Pd, ,„z,where S =
E X 8/p, II). The time rate of change of the magnetic
helicity can be expressed as

He ——— (E,„dX A + 2@B) da —2 E BdV,

(5)
where P is the scalar potential [1,6]. The first in-
tegral describes the Aux of magnetic helicity across
closed surfaces, which consists of "ac" helicity injec-
tion [f~(BA/6t X A) da] and "dc" helicity injection

For the EMHD regime, the Hall term is domi-
nant, followed by the inertial and resistive terms
(cu„=eBo/m, » I)/Bt » t ). Neglecting collisions,
Faraday's law yields

BB m, &= —V x E = —
i ~ VJ + V x —,(2)

n, e2 ( Bt)
WhiCh, fOr cu„V= co„I3/I3Z = (tv„/—v~~)B/6t, Can be
integrated to obtain
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FIG. 4. Time dependence of the volume-integrated (—13 (
I, y ( 13 cm, 2 ( z ( 57 cm) helicities and transport equation
terms vs time. (a) Magnetic helicity, ff A . B dV, mainly
generated by volume sources, —2 ff E B dV dt, partly by dc
injection, —2 ffz pB da dt, but insignificantly by ac injection,
ff, (aA/at x A) . da dt = 0. Variation of the volume along z
shows that there is no injection; by the electrode (z = 0), but
only volume production near the source (0 ( z ~ 10 cm). For
z ) 10 cm, volume dissipation occurs, and injection at zo ) 0
is due to flow of helicity produced at 0 ( z ( zo. (b) Helicity
of current density or electron fiuid velocity, f J . B dV. This
helicity is entirely injected from the electrode, mainly by the dc
term, —2 ff, (E x J) dadt » ff, (aB/at x B) . dadt, and
lost by volume dissipation, —2 ff E (V x J) dV dt ( 0. The
transport resembles that of the energy since E x J ~ E & 8 =
S (Poynting's vector) and E (V X J) ~ E . J.

z cm

FIG. 3. Helicity density of the vector field J = —n, ev„
showing positive helicity for all current pulses: the primary
in the center and induced, secondary ones on the left. The
pulses propagate at v„h;„i,„=1.4 X 10' cm/s along z (ii Bo)
(3 dB = factor of 2 per contour; ~8 contours; zero contour has
double width). (b) Helicity density integrated over transverse
cross section showing propagation, damping, and relative
helicities of the three pulses. Variation of integration limits
(not shown) indicate that damping is not due to transverse
outflow. (c) Helicity amplitude of the first major pulse along
its propagation characteristics, z = visit' [straight line between
diamonds in (b)]. For comparison, the magnetic energy (dashed
line) along the same characteristic is shown and found to
exhibit a similar decay. However, the normalized helicity
remains constant and close to unity, implying that J and B
are, on the average, well aligned and their topologies do not
change due to dissipation.

(—2 fs PB . da). The second integral describes helicity
generation and losses within the volume. These rates have
been time integrated and displayed in Fig. 4(a). The ac-
injected helicity is found to be negligible. The dc Aux,

E - BdVdt ~— BdVdt (x —U ( 0,8

Bt

(6)
but the experimental observation is )0. The breakdown
of Eq. (3) is due to the boundary conditions of B and J at
the electrode (B J J).

—2 f(fs pB . da) dt, exhibits both injection and outflow
when the pulses enter and leave the volume. Most of
the helicity is accounted for by volume production and
losses which balance in time [—2 f(f E . B dV) dt = 0 at
t = 1 p, s]. Further insight into the helicity transport is
obtained by varying the axial starting position z for the
volume/surface integration (not shown). As z is increased
from its smallest value (z = 2 cm, Fig. 4, electrode at
z = 0), the helicity injection rapidly increases, the volume
production vanishes, and volume losses balance injection.
Vice versa, extrapolation of this trend to z = 0 shows
a negligible Aux term, which is understandable since
B - da ~ 0 at the surface of the electrode. One must
conclude that the magnetic helicity is created in the
volume near the electrode (0 ( z ( 10 cm), transported,
and gradually dissipated. The production of helicity near
the electrode is evidence that Eq. (3) breaks down in the
vicinity of the electrode. First order theory predicts that
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The transport equation for HJ is given by

( BB
at )

pp —(VXE) J dV

(aB
X B/pp —2E X J da —2(at

X E (VX J)dV, (7)

where the helicity "Poynting's" vector has again an
ac injection term, fs(aB/at X B/pp) da, and a dc
term, —2 fs(E X J) da. Figure 4(b) shows the helic-
ity contributions produced by each term. In contrast
to the magnetic helicity, there is no volume genera-
tion but only volume dissipation. All the current he-
licity is injected, —2 fs(E X J) da = 2 ff E„Jedxdy =
2o.H ff E2 dx dy ) 0, where Je is derived from Eq. (1) by
neglecting the inertial and resistive terms. This expres-
sion holds in the plasma but not at the surface of the
electrode (E ~~ da). Thus, the helicity flows around the
electrode similar to Poynting's vector, S.

Thus, in a Hall current-dominated regime (~J~ /
[V X J( » v~~/co„), one has (i) A ~ B ~ J [Fig. 2(b)],
hence A B ) 0, J . B ) 0 [Fig. 3(a)]; (ii) normalized
helicities constant and near unity [Fig. 3(c)]; (iii) constant
helicity ratio, J B/A B = pp(o H v~~); (iv) helicity
proportional to magnetic energy, J B = 2L '(8 /2p, p),
where L = (ppo H v~~) '; (v) ac helicity injection of
J . B proportional to the Poynting's Aux based on the
small inductive electric field, js(aB/at X B/pp) da =
L f, (E;„dX H) da; (vi) dc helicity injection of J B
proportional to the Poynting's flux, . 2 fs(E X J) . da =
L ' fs(E X H) da; and (vii) the volume term, f E .

(V X J) dV = L ' f(E J) dV, whose time-integrated
asymptotic value (t ~ 1 p, s) describes the total current
helicity/energy dissipated. These simplified relations
explain the observations qualitatively, but corrections

for inertial and Ohmic terms improve quantitative
comparisons.

In conclusion, first direct measurements of the helicity
properties of a three-dimensional EMHD current system
produced by a simple geometry have been presented.
Helicity arises self-consistently from the linkage of Hall
currents with field-aligned currents. The former are
always produced by the latter since the immobile ions
cannot neutralize the electron charge imbalances. The
relation between helicities and their transport have been
analyzed and explained by basic equations. These results
are of intrinsic interest and of possible relevance to
various EMHD applications, theories, and simulations.
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