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Symplectic Calculation of Lyapunov Exponents
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The Lyapunov exponents of a chaotic system quantify the exponential divergence of initially nearby
trajectories. For Hamiltonian systems the exponents are related to the eigenvalues of a symplectic
matrix. We make use of this fact to develop a new method for the calculation of Lyapunov exponents
of such systems. Our approach avoids the renormalization and reorthogonalization of usual techniques.
It is also easily extendible to damped systems. We apply our method to two examples of physical
interest: a model system that describes the beam halo in charged particle beams and the driven van der
Pol oscillator.
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Chaotic dynamics has been observed in a wide variety
of systems, including biological systems, weather mod-
els, mechanical devices, plasmas, and Auids, to name a
few. In the chaotic regime these systems exhibit expo-
nential divergence of initially nearby trajectories. This
divergence is quantified by the Lyapunov exponents of
the system which are obtained from linearizing the dy-
namics around a fiducial trajectory [1]. Over the past
two decades or so there has been "intense activity" [2]
directed toward the computation of these exponents, re-
sulting in several different numerical approaches [1,3,4].
The two difficulties associated with the computation of
Lyapunov exponents are (1) exponential growth of the
separation vector (between the fiducial and nearby tra-
jectories) and (2) the exponential collapse of initially
orthogonal separation vectors onto the direction of maxi-
mal growth. Most conventional methods overcome these
hurdles by intermittent numerical rescaling and reorthog-
onalization (through, e.g. , the Gramm-Schmidt procedure
[3]). Many chaotic systems are Hamiltonian or they
can be transformed into a Hamiltonian system by suit-
able manipulations. However, none of the above general
methods are designed to take advantage of this fact.

The dynamics of classical Hamiltonian systems has an
underlying symplectic structure [5]. In recent years sym-
plectic methods have been applied with great success to
classical dynamical problems. The field of accelerator
dynamics has been revolutionized by the introduction of
nonlinear symplectic maps as represented by Lie trans-
formations [6,7]. Very long time integration of charged
particle and planetary systems has been aided by the de-
velopment of high order symplectic integration algorithms
[8]. In this Letter we exhibit a symplectic map-based ap-
proach towards the calculation of Lyapunov exponents.
As shown below, this approach obviates analyticaLly the
need for rescaling and reorthogonalization in the numeri-
cal computation of the exponents. We have success-
fully applied our method to several systems, including

dt
= DF(zo, t) Z . (2)

Our approach can be used whenever this linearized set of
equations can be derived from a Hamiltonian. From now
on we will suppose that this is the case, and that we can
write Z = (q~, q2, . . . , qm, p~, pq, . . . , p ), where q, and p;
denote canonically conjugate coordinates and momenta,
respectively. It follows that

(3)

where [,) denotes the Poisson bracket, and where H is a
homogeneous quadratic polynomial in the q; and p;. A
system such as this is governed by a symplectic matrix
M that maps the initial variables Z'" into time-evolved
variables Z(t),

Z(t) = M(t)Z'". (4)

Let A be given by

A = lim(MM)'t ',

the Duffing oscillator, the damped driven pendulum, the
driven double-well system, the beam halo system, and
the van der Pol oscillator (details will be presented else-
where [9]). In this Letter, we will briefly describe our
general approach and expose in some detail the latter two
examples.

Consider a 2m dimensional continuous-time dynamical
system governed by the equations

dz—= F(z, t),
dt

where z = (z~, z2, . . . , z2 ) and similarly for F. Let zo
denote some given fiducial trajectory, and suppose we
wish to study nearby trajectories. To do this, define
deviations from the fiducial trajectory by letting Z =
z —zo, and linearize the above equations. The new set
of equations for the deviation variables is
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where M denotes the matrix transpose of M. The Lya-
punov exponents then equal the logarithm of the eigenval-
ues of A [1].

It is easy to show that M satisfies the equation of
motion (see, for example, Ref. [10])

B3 0 —1

It follows that

(13)

= JSM,
dj

where S denotes the symmetric matrix given by

1
2m

H(z, r) = —g s,,z, z, ,
i j =1

and where

(6)

where S is a symmetric matrix that anticommutes with J
and S, is another symmetric matrix that commutes with
J. It is important to note that the second matrix on the
right-hand side of (10) is in fact unitary, so that

MM = e"'.
Note that this matrix has fewer degrees of freedom
than M and its eigenvectors are orthogonal. Rather than
attempting to directly integrate Eq. (9) which would still
have a large numbers problem, we focus our attention on
the exponent JS, in Eq. (10). It is clear that we now
do not have a large numbers problem since JS already
appears as an exponent.

To proceed further, one obvious approach is to use an
explicit representation of exp(JS„). Such a representation
is well known for Sp(2) and has recently been found for
Sp(4) [generalizations to Sp(2m) are in progress] [9]. For
the purposes of this Letter we restrict ourselves to systems
with a two-dimensional phase space. When driven,
these represent the simplest continuous-time systems that
can exhibit chaos. The most general two-dimensional
symplectic matrix can be written in the form

JS, JSc

p, (B2 cosa+B3 sina) bB1 (12)

where a, b, and p, are real coefficients and where the B;
are basis elements of the Lie algebra sp(2) [6]:

Here 1 denotes the I x I identity matrix. It follows that
the evolution of MM is governed by the equation

d—MM = JSMM —MMSJ . (9)
dt

Standard methods for obtaining the Lyapunov exponents
deal with M, which is not real symmetric (hence the
need for reorthogonalization) and which has exponentially
growing elements. To avoid these difficulties we exploit
the fact that M is symplectic by making use of the ex-
ponential representation of symplectic matrices [6]: Any
symplectic matrix M can be written in the form

M Js, Js,

Thus, we obtain

2p, (B2 cosa+B3 sina)

(p, /t) (82 cosa+83 sina)

(14)

Sfi 0
0 $22 ) (17)

After some manipulation, Eqs. (7)—(9) lead to the
following:

dp 1

dt 2
(sp2 si i) cosa,

80
5&] + s22 ($22 sf f) sina cothp, .

dt
From the initial condition M(0) = I, if we choose p, (0) =
0, then cos a(0) = 1, i.e. , a(0) = 0 or vr. These differen-
tial equations form the basis of our method for calculating
the Lyapunov exponents of Hamiltonian systems: They
are stepped forward in time numerically until some de-
sired convergence for the exponents, ~p/t, is achieved.
Later we will also show how to apply the method to cer-
tain non-Hamiltonian systems.

As a first concrete example, we consider the newly de-
veloped "core-halo" model which describes beam halo in
mismatched charged particle beams [11]. The transverse
equation of motion for a halo particle in this model, as-
suming constant external focusing, is

X + x —(1 —g )f(x, r (r)) = 0, (19)

where x is the position variable for a halo particle,
f(x, r(t)) is the force due to the space charge of the beam
core, and r(t) is the time dependent rms radius of the
core. The core radius is assumed to follow the envelope
equation

r+r—1 —g
r

(20)

Finally, it is easily shown that the eigenvalues of this
matrix are e —&/'. The Lyapunov exponents are then equal
to ~p/t in the limit t ~ ~. With this convenient choice
of variables, the explicit representation of MM is given by

MM= cosh2p, + sina sinh2p, cosa sinh2p,

cosa sinh2p, cosh2p, —sina sinh2p, )
(16)

The unknown quantities a and p, can grow in time at most
as O(r). We can obtain differential equations for these
quantities by returning to Eq. (9), the dynamical equation
for MM.

For simplicity, we will assume that 0 contains no term
proportional to qp, so that the matrix S in (7) is of the
form
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Here units have been chosen so that the time independent
solution of (20) (i.e., a matched beam) is given by
r = 1. In these units g = 0 corresponds to the space
charge dominated regime, while g = 1 corresponds to the
emittance dominated regime. We now assume

0.05

0.04

18) with

exp+ r
2xo

(xp + r')~)
(22)$22 —1,

where xp denotes the fiducial trajectory. Figure 2 displays
Theour result for the Lyapunov exponent against time. e

slow convergence of the exponent is typical of Hamilton-
ian systems.

So far we have dealt with explicitly Hamiltonian
systems. However, the only real requirement for using
our method is that the linearized deviation equations
in some variables be Hamiltonian. This allows for the
inclusion of damped systems in our scheme. As an
example, we now consider the following general driven

f(x, r) = (21)x2+ r2

which has the correct asymptotic behavior: The force is
linear when x (& r, and it is inversely proportional to x
when x » r. Equations (19) and (20) describe a driven
nonlinear system with a mixed phase space as demon-
strated by the stroboscopic plot shown in Fig. 1. The
presence of a chaotic band is important, because parti-
cles initially in the core can leak through the broken sep-
aratrix and be carried to large amplitudes. The presence
of such large amplitude particles can cause unacceptably
high radioactivation levels in high intensity linacs planned
for future accelerator-driven technologies [12]. Leakage
through the separatrix can be enhanced through particle
collisions and recent work has shown that this rate is con-
trolled by the Lyapunov exponent [13]. We have com-
puted the Lyapunov exponent for this system by integrat-
ing (
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FIG. 2. Positive Lyapunov exponent for the core-halo model
in a typical run. Parameters are the same as in Fig. 1.
The simulation was run for 105 periods of the driving force
using 100 integration steps per period for Eqs. (18) with a
third-order Runge-Kutta algorithm. The envelope equation
and the fiducial trajectory were integrated with a fourth-order
symplectic algorithm using 200 steps per period.

nonlinear oscillator:

X + A(1 —ex') x + V'(x) = a cos(cut) . (23)

B appropriate choices of A, e, and U(x), this reducesy a
to an assortment of well-known equations including van
der Pol [A ( 0, e = 1, V(x) =

2 x ], Duffing [A & 0, e =
0, V(x) = nx + Px4], and the damped driven pendulum
[A & 0, e = 0, V(x) = 1 —cos(x)]. In terms of the devi-
ation variable 6, the linearization of (23) yields

j + A(I —ex')6 + [V"(xp) —2eAxpxp] 6 = 0, (24)

where xp represents the fiducial trajectory. Introducing
the new variable 5 defined through

(25)

where

1
@~1 :f

0
r'I ',

.'ti':.

''j

Pr

,s',g&
cgP

g = ——A(1 —exp), (26)
2

Eq. (24) reduces to that describing an undamped oscillator
with time dependent frequency,

5 + [V"(xo) —eAxpxp —
4 A (1 —exo) ]5 = 0. (27)

It is now straightforward to proceed using our
method: For linear damping (e = 0) the Lyapunov
exponents g of this system are given by

= ——A 4- lim —p, p(t),
1 ~ 1

(28)
taboo

where p, p follows from solving (18) for the system defined
b (27). When e 4 0,

FIG. 1. Stroboscopic plot of the chaotic sea in the core-halo
model. Snapshots were taken at successive beam minima for
32 test particles. Parameter values were r(0) = 0.6, ( r)0=
and g = 0.2.

X= = »m —[g(t) ~ po(t)] (29)
taboo

modulo terms that are exponentially suppressed at late
times. Figures 3(a) and 3(b) show the Lyapunov expo-
nents of the van der Pol system calculated using our
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tegration problems, we do not expect our method to have
universal applicability and advantages. However, when
applicable, the method has certain advantages over stan-
dard techniques, most importantly the lack of systematic
errors associated with intermittent reorthogonalization and
rescaling.
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method. For the chosen set of parameters our results are
in agreement with those of Ref. [4]. In contrast with the
results shown in Fig. 2, the convergence of the exponents
is much faster, as is typical of nonweakly damped sys-
tems.

In summary, we have described a method for com-
puting Lyapunov exponents that exploits the underlying
symplectic structure of Hamiltonian dynamics. Just as
symplectic integrators are not a panacea for all time in-

FIG. 3. (a) Positive Lyapunov exponent for the van der Pol
oscillator with parameters A = —5, a = 5, and cu = 2.466
(taken from Ref. [4]). The simulation was run for 10'
periods of the driving force using 100 X 10 time steps for
Eqs. (18) and 200 X 106 time steps for the fiducial trajectory.
The integrators were third-order Runge-Kutta and fourth-order
symplectic, respectively. (b) Negative Lyapunov exponent for
the van der Pol oscillator with the same parameters as in (a).
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