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Nonlinear Saturation of Toroidal Alfven Eigenmodes
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The saturation of toroidal Alfven eigenmodes (TAE) due to the effect of magnetohydrodynamic
(MHD) nonlinearities is analyzed. The saturation level scales as (a/Ro)'I'- (the ratio of the minor
to the major radius of the torus), and for typical values of the inverse aspect ratio e = a/R&&, it is
comparable with that predicted when the saturation mechanism is due to a nonlinear reduction in the
energetic particle drive. The MHD saturation mechanism is thus expected to be potentially relevant to
the nonlinear TAE dynamics.

PACS numbers: 52.35.Bj, 52.35.Mw, 52.55.I a

Toroidal Alfven eigenmodes (TAE) have recently
attracted significant attention [1,2], since they may be
destabilized by the resonant interaction with energetic
plasma ions with velocities of the order of the Alfven
speed vA = B/~g (B —= magnetic field strength, @ —=

plasma mass density) [1] and large energetic particle
losses can be produced consequently.

A possible nonlinear saturation mechanism for TAE has
been proposed by Berk and Breizman [2], who analyzed
the effects of alpha particles trapped in a finite ampli-
tude TAE wave. In this Letter we describe a different
picture of the nonlinear TAE dynamics, where magneto-
hydrodynamic (MHD) nonlinearities are important, rather
than those of the energetic particles. Our goal is to de-
rive an equation for the time evolution of the TAE wave
amplitude, assuming that the energetic particles dynamics
is linear. In particular, we will show that, above a critical
threshold for the mode amplitude, nonlinear saturation oc-
curs due to the excitation of a perturbation to the nonlin-
ear mode structure, which dissipates energy on very short
scales, determined, e.g. , by finite plasma resistivity. The
obtained saturation levels are generally comparable with
those expected as a consequence of energetic particles
nonlinearities [2].

We consider a pressureless axisymmetric toroidal equi-
librium with shifted circular magnetic surfaces and a
cylindrical coordinate system (R, @,Z) is used. For a
large aspect ratio torus (R /a o—= 1/e )) 1, Rp and a being
major and minor radii), the magnetic field can be writ-
ten as B = RoV'It && V@ + ROBpV@ + O(e )By, and the
component of the fluid velocity perpendicular to V@ as
v J (R /Ro)V U X V @ + 0 (e') v~, where Bo is the vac-
uum magnetic field at R = Rp. The "magnetic Aux"
W = 'It,

~ + alt is given by an equilibrium term W,„and
a fluctuation P, while U is entirely due to fluctuations,
since no equilibrium Aows are considered here. The fields

P and U [3] are obtained from the parallel Ohm's law and
the vorticity equation
BP R+ vz VzP =

z B,q . VU + rid" P + O(e )v~B~,
Bt Rp

(I)

2 0U
gp

—+ ~, V — V', U
Rp BZ

2

= B Vh""W + O(e )g . (2)

In Eq. (1), rI is the plasma resistivity and b,

Rcj/clR(R 'll/BR) + 6 /RZ2 is the Grad-Shafranov opera-
tor, while, in Eq. (2), go = gR2/R&& is assumed constant.
A curvilinear coordinate system (r, 0, P) may be used,
where r is a radial-like Aux function, 0 a poloidal an-
glelike coordinate, and P the toroidal angle, chosen such
that the inverse Jacobian (Vr X VO) V@ = Ro/rRz
and the safety factor q = q(r) Each fluctua. tion tit, U
is written in the form F(x, t) = g „e'"~ "~ F„,„(r, t),
with F „(r,t) = F' „(r,t) and m(n) being the poloidal
(toroidal) mode number.

For the sake of simplicity, we consider a single
frequency gap, due to the toroidal coupling of the (1,1)
and (2, 1) Fourier harmonics. From the linear theory [4,5],
it is well known that a frequency gap is opened at the
interaction of the (1,1) and (2, 1) shear Alfven cylindrical
continua [where qo = q(ro) = 3/2 and the frequency is
too = v~/2qoRO = co~/2] because of the O(e) toroidal
coupling. The two harmonics are characterized by a
typical scale length a, outside the gap, and ea in the gap
region, because ea is the radial width of the gap region
itself. Since the gradients of the eigenfunctions are larger
in the gap region, nonlinearities will be important mostly
there. Thus, the nonlinear interaction of the (1,1) and

(2, 1) harmonics will locally force (1,0) and (3,2) nonlinear
beat components. [Other nonlinear beat components, i.e. ,

(0,0), (2,2), and (4,2), are not present [6], since Alfven
waves are exact solutions of the cylindrical ideal MHD
equations, the self-coupling nonlinearity being zero. ] This
four-modes coupling scheme determines the evolution of
the system in our model. Two time scales exist: The
faster corresponds to the Alfven scale, while the longer
is determined, in linear theory, by the O(e) toroidal
coupling. Therefore, the time derivative can be written as

rico + ( e/o2to)or)r, with dto = O(to(&), eo = 2A +
ro/Ro, 5' being the derivative of the Shafranov shift,
and T =—eotoot/2 being a dimensionless time variable.
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The Fourier components F,„„(r,t) of the fluctuations
can then be expressed by means of asymptotic series
F+~„(r, ro, T) + eoF"~„(r, io, T) +

A typical estimate for the mode amplitude is obtained
from Eqs. (1) and (2) assuming that toroidicity and
nonlinearities compete at the same level. This yields
Ul, l U2, 1 e av& and Ul 0 = U3 2 = v&ae . UsingS/2 3

the above derived ordering, it is possible to determine
an explicit expression of the (1,0) and (3,2) components
in terms of the (1,1) and (2, 1) harmonics, by direct
integration of Eqs. (1) and (2) [7]. The (1,0) and (3,2)
components turn out to have a time dependence of the
form Ul p

= U~ p(r, T) and U3q = e ' "'"Uq2(r, T), with
the "hat" denoting variables which change only on the
longer time scale.

At the lowest order in our asymptotic expansion, the dy-
namics of the (1,1) and (2, 1) components on the faster
time scale is described by the linear cylindrical equa-

tions, yielding U i
= e '"""U &(r, T) and P, = —(q—(0) t

- (o) ~ (0)

~ (0)
m)Bp/(qRocop)U 1 (m = 1, 2). The nonlinear equations
valid in the gap region [7], which determine the time evo-

- (0) - (0)lution of Ul l and U2 l on the longer scale, are derived from
the vorticity equation and Ohm's law at the first order in
the asymptotic expansion [O(e)], by requiring the first or-

~ (l) ~ (l)der U l l and U2 l components to be free of secular terms,
yielding

(ia, —iI —4Eva2 —2sx)a, u + a, v

—c„(T) —4a, ua, lvl = 0,
(iaT —iI —4i va, + 4sx)a, v + a, u

—c (T) —4a, va, lul = 0.
Here, v = il/(cuprpep), s = rpqp/qp is the magnetic
shear, and x =— 2(r —ro)/(1 p eo). A term i I ha—s
been also inserted ad hoc to model a linear drive,

y = epcupl /2, associated with the energetic particles.
Furthermore, u(x, T) and v(x, T) are the Fourier compo-
nents of the vorticity normalized to Up =—(2/ep) &&

2 . ~ (0) ~ (0)(I /ct)orp); u(x, T) —= Ul 1/Up, v(x, T) —= U2 ~ /Uo, and
the quantities C„(T) —= 2qpC|1(rp, T)/Up and C„(T) —=

2qpCz ] (rp, T)/Up are obtained from the dissipationless
linear cylindrical equations outside the gap region [5]:

a, [U.. .(,T)/ ] = c..(,T)/["D. .( )], (4)
a„[rc „(r,T)] = (m —1)D„,„(r)U „(r,T),

with D „(r) = 1/9 —[n —m/q(r)]2. Equations (4)
need to be integrated with regularity conditions at r = 0
and boundary conditions at r = a (e.g. , that of a rigid
conducting wall). Since D,„„(rp) = 0, U„„ is discontinu-
ous at r = rp (while C„, , is continuous), with the jump in
U determined by the matching with the solution in the

gap region.
From the second of Eqs. (4), it follows that C, = 0.

Meanwhile, Ul 1
= UpA(T)(r/a) for r ( rp and U~ 1

=
0 for r ) rp, with A(T) given by the jump condition

A(T) (rp/a) = —j dx a, u. As to the (2, 1) component,
the jump condition yields [5]

[U2, 1(rp+) U2, 1(rp —))/Uo dx (9~ v

gg dg — $KCv ~

4»' f -(la.fl' + la-. gl') dz

f =(lfl'+ lgl')dz

(7)

with gR —= Re(g) and gI =—Im(g). (The second of
Eqs. (7) is derived from Eqs. (6), constructing a quadratic
form in which the quartic nonlinearities are eliminated
by exact subtraction. ) Equations (7) determine the two
unknowns of the problem, namely, Re(A) and C [7,10]
at saturation.

with K being a constant which depends only on the q
profile. Such a condition determines the time behavior of
C, and, hence, it is a nonlinear equation for the evolution
of the TAE wave amplitude. Equations (3), together
with Eq. (5), define, a well posed problem for studying
the nonlinear dynamics of TAE models. More general
nonlinear equations, valid for arbitrary mode numbers,
will be given elsewhere [7].

In the linear limit, Eq. (3) has solutions of the form
C„(T) = C e '~T+r. r, with C, being independent of
T. In this case, Bv(C„) is linearly proportional to C„
and Eq. (5) determines the eigenvalue A. Following the
analysis of Ref. [8], it can be shown that Im(A) is related
to the effect of dissipation, yielding Im(A) = vs in the
case vs2 « 1. It is worthwhile recalling that Im(A) can
be significantly larger than the estimate Im(A) = vs if
the mode frequency is sufficiently close to the shear
Alfven continuum and/or finite ion Larmor radius and
electron inertia effects are included [9]. Although the
inclusion of these effects in our treatment is possible,
we will nevertheless neglect them for simplicity, since
the physical picture of mode saturation remains unaltered.
Therefore, if I » vs, the mode is linearly unstable.

Also at saturation, i e., when the mode amplitude
does not grow in time, solutions of the form C„(T) =
C, e 'x " satisfy Eq. (3) with the nonlinear terms in-
cluded, provided the condition Im(A) = —I is satisfied.
Taking, for the sake of simplicity, the small magnetic
shear limit, s « 1, the nonlinear system, Eqs. (3), yields
two coupled nonlinear ordinary differential equations for
the functions f =—e'xT " T a u and g =—e'~T ".r a, v:

(A —4ivs'a,' —2z)f + g —8lgl'f = 0,

(A —4ivs a, + 4z)g + f —8lfl g = C„,
with z —= sx. In terms of g, Eq. (5) together with the
saturation condition Im(A) = —I yield
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Assume that the mode is linearly unstable (I' )) vs2).
From the second of Eqs. (7), it is clear that the saturation
condition can be satisfied only if very small scales are
excited. In order to understand how such an excitation
can occur, it is convenient to neglect the effect of resistive
dissipation in Eqs. (6) first, yielding an algebraic system
in the unknowns f and g:

(A —2z)f + g —8lgl f = o,
(8)

(~ + 4z)g + f —8lfl', = C„.
Among the various roots of the above system, the physi-
cal solution is that which behaves as g = C /4z and

f = C /8z for lzl ~ ~, since, far from the gap region,
the mode dynamics is linear. Small scales can be excited
only if f and g tend to become singular. From Eqs. (8),
it is clear that this can happen only if the Jacobian
J(z, C ) —= [A —2z —8g (z)][A + 4z —8f (z)] —[1—
16g(z)f (z)]2 tends to vanish. It is interesting to note that
the condition J = 0 defines, in the linear limit, the shear
Alfven continuum and that J ( 0 for a linear TAE mode.

The condition J = 0 is, therefore, the necessary con-
dition for nonlinear excitation of small scales and thus
for nonlinear mode saturation. To see how this results
in a threshold condition on the mode amplitude, consider
that J = 0 will occur first at the local maximum (z = zp)
of J, since for lzl ~ the Jacobian is always negative
(J = —8z ). Furthermore, the first of Eqs. (7) determines
A as a function of C and sK. Thus, the maximum of
the Jacobian Jp —= J(zp, C„,A) turns out to be a function
of C and sK, with Jp ( 0 for C ~ 0. Conversely, for
a given sK, specifying Jp is equivalent to give C, A, and
the solutions f and g. We anticipate at this point what
we will be able to show later, namely, that, for any fi-
nite value of K, a finite value of C, C p, exists at which
Jp = 0. Thus, for any value of K, the functions f and g
will tend to develop a singular behavior as a critical mode
amplitude is approached. Above this critical mode ampli-
tude C p the damping rate is expected to rapidly increase
above the linear estimate Im(A) = O(vs ), and nonlinear
mode saturation occurs.

A rigorous proof of the fact that the mode actually
saturates above the critical amplitude threshold C p is
tedious and requires the use of singular perturbation
theory. For this reason, we prefer to give it elsewhere [7]
with the required details. One result, however, is worth
mentioning here: The actual mode saturation level C, is
just slightly bigger than C p in the small dissipation limit.
In fact, writing C, = C p + AC, it is possible to show
that [7]

p(4„2)7)s )
AC„= —0.87(4vs ) ~ In(4vs ) ln )'

under the condition (4vs2) « I « (4vs )'~ . This re-
sult indicates that C p may be considered as representa-
tive for estimating the mode amplitude at saturation, since
AC, is actually small for (4vs~) && 1. Thus, the saturated
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FIG. 1. Numerical results are shown for sK = sK(A), ob-
tained from the first of Eqs. (7), and for C„p(A), obtained from
the condition Jo = 0. The choice of q profile determines sK,
and, hence, the eigenvalue A. The corresponding saturation am-
plitude C o may be determined graphically.

amplitude can be determined by the critical value C p at
which the Jacobian of the algebraic system, Eqs. (8), van-
ishes. In Fig. 1, the two functions C„p(A) and sK(A) are
shown. It is apparent that, for any value of K, mode
saturation can occur due to the MHD nonlinearity. (In-
cidentally, we note that, for monotonically increasing q
profiles, the constant K is negative. ) For a model equi-
librium q = q(0) + [q(a) —q(0)](r/a)2, q(0) = 1.1 and

q(a) = 1.9, it is possible to show that C,p
= —0.074 and

A = —0.578 by numerically solving Eqs. (8). Unfold-
ing the normalizations, this condition can be expressed
as IUt, t(rp)l/av~ = 1.58 X 10 (a/Rp) ~ at saturation or,
equivalently, lBB„t i(rp)/Bpl = 2.21 X 10 2(a/Rp)s~2.

This picture for the TAE saturation has been verified
using a numerical code, described in Ref. [10], which
solves the nonlinear reduced MHD equations (1) and

(2). Some numerical results are given in Fig. 2, where
the amplitudes of the relevant Fourier harmonics at
saturation are shown vs e. The saturated amplitude of
the (1,1) component turns out to be lUit(rp)l/av~ ——

2.8 && 10 (a/Rp)~4", in fair agreement with the analytical
results, considering that the low-shear condition is only
marginally satisfied (s = 0.53 in the present case).

Energetic particle trapping and mode-mode coupling,
as saturation mechanisms, are characterized by differ-
ent dependences of the saturated amplitudes on the rel-
evant experimental parameters. In fact, the mechanism
proposed in Refs. [4,11] gives BB/B = e(a/p ) (y /tp)~
at saturation, where p is the energetic particles Lar-
mor radius. The MHD saturation level, instead, scales
as BB/B = C pe ~ . Thus, energetic particle trapping
is expected to be more important for weak energetic
particle drive. However, as the TAE frequency ap-
proaches the shear Alfven continuum accumulation points
for A ~ ~2/2/3 (cf. Fig. 1), the critical threshold C,p

gets smaller, and the present mechanism may become
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but, in a realistic situation, it may vary due to energetic
particles diffusion. As a consequence, a TAE wave might
collapse after saturation, showing that the scenario con-
sidered here does not exclude the possibility of nonlinear
TAE pulsations [11],which may be caused by energetic
particle losses.
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FIG. 2. Saturated amplitudes vs e for the relevant TAE
Fourier harmonics. Full circles refer to the (1,0) component,
full squares to the (l, l) component, open squares to the (2,1)
component, and open circles to the (3,2) component. Broken
lines are best fits to the numerical results. Analytical results
for the (1,1) component are also shown as a solid line.

relevant. Taking e = 1/3 and (a/p ) = 30 as typical
parameters, and considering A = —0.5 ~ C p

= 0.1 for
a TAE mode not too close to the frequency gap center,
it emerges that the MHD nonlinearity becomes more im-
portant for (y /ro) ~ 2—3 X 10 2. We may then con-
clude that both MHD and energetic particle nonlinearities,
depending on the considered scenario, can be important
for TAE modes saturation. The former tends to be more
relevant for strong mode drive or for peaked mode struc-
tures (TAE's close to the continuum accumulation points),
while the latter is predominant for weak mode drive, i.e.,
close to marginal stability. In general, however, they may
be operative at the same time.

The nonlinear TAE saturation, as presented here, pre-
dicts the formation of a constant amplitude wave when
the nonlinearly enhanced dissipation balances the linear
mode drive. For simplicity, the latter is kept constant,
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