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Secondary Instabilities and Spatiotemporal Chaos in Parametric Surface Waves
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A 2D model is introduced to study the onset of parametric surface waves, their secondary instabilities,
and the transition to spatiotemporal chaos. We obtain the stability boundary of a periodic standing wave
above onset against Eckhaus, zigzag, and transverse amplitude modulations (TAM), as a function of the
control parameter e and the wavelength of the pattern. The Eckhaus and TAM boundaries cross at a
finite value of e, thus explaining the finite threshold for the TAM observed experimentally. At larger
values of g, a numerical solution reveals a transition to spatiotemporal chaotic states mediated by the
TAM instability.

PACS numbers: 47.52.+j, 47.35.+i, 47.54.+r

A layer of incompressible Quid that is driven by
a sinusoidal force normal to the free surface at rest
exhibits parametrically excited surface waves, also known
as Faraday waves [1,2]. We introduce in this paper
a two-dimensional model that possesses many of the
features observed in experimental studies of Faraday
waves in low viscosity fIuids: a primary instability to a
standing wave pattern, a secondary instability (transverse
amplitude modulation or TAM) at larger amplitudes of
the dimensionless driving force ~, and a chaotic state at
yet larger values of e. Our study focuses on the large
aspect ratio limit in which the wavelength of the wave is
much smaller than the lateral dimension of the Quid layer.

Recent experiments on Faraday waves in large aspect
ratio systems have revealed a number of interesting phe-
nomena [3—8]. Among them, periodic standing wave pat-
terns near onset are found to be unstable against a TAM
at some finite supercriticality [3,4,6]. Associated with
this instability, temporal fluctuations of the pattern have
been observed, with a characteristic time scale that de-
creases continuously with increasing e. Beyond a certain
value of e, the wave patterns appear temporally chaotic
and spatially disordered [3,4,6,7]. The origin of the TAM
instability and its relationship with the disordered state
was first studied theoretically by Ezerskii et al. [4], who
derived a one-dimensional model to describe the modu-
lation. Later, Milner [9] derived a set of coupled ampli-
tude equations for a two-dimensional surface, including
the nonlinear interaction and damping of the waves. He
showed that a pattern of square symmetry is realized
near onset in fluids of low viscosity, and that it can
become unstable against a TAM. However, its finite
threshold and the issue of wave-number selection remain
not well understood [2]. Studies of chaotic wave pat-
terns were also conducted by Rabinovich, Reutov, and
Rogal skii [10], who numerically studied an amplitude
equation for a pair of counterpropagating waves, and
found features similar to the chaotic states observed in
the experiments.

To address the issues of pattern selection and the tran-
sition to a disordered state we have derived a set of

quasipotential equations (QPEs), valid for weakly damped
surface waves [11]. Following earlier work of Lundgren
and Mansour on free surface waves [12], we have derived
the QPEs from the Navier-Stokes equations by perform-
ing a perturbation expansion in the small thickness of the
viscous boundary layer at the Auid surface. The QPEs
have been further expanded up to third order in the wave
steepness to yield a closed set of (nonlocal) equations in-
volving only the free surface displacement from planarity
and the velocity potential on the surface. These equations
have been used as a starting point for a multiscale asymp-
totic analysis to obtain amplitude and envelope equations
valid near onset, and based on these amplitude equations
the symmetry of the selected pattern of standing waves
is determined [11]. Because of the complicated nonlin-
ear terms in the QPEs, it is difficult to study analytically
secondary instabilities of the base pattern and the pos-
sible mechanism responsible for the onset of spatiotem-
poral chaos observed experimentally. In order to make
further progress in this direction we introduce in this pa-
per a simplified model [defined in Eq. (1) below] that
retains the rotational symmetry of the fluid layer and
many of the qualitative features of the original model,
but that incorporates only the simplest possible functional
form of the nonlinear terms. The main difference be-
tween Eq. (1) and the full model is that the primary in-
stability in the former leads to a standing pattern of lines
(one-dimensional periodic solutions), instead of a pattern
of square symmetry in the latter. On the other hand,
the amplitude equation associated with Eq. (1) reduces to
Milner's amplitude equations when P is assumed to
be modulated along particular directions of propagation,
and to Ezerskii et al. one-dimensional equation in the case
they considered. We therefore expect that our findings
concerning secondary instabilities, and the general fea-
tures of the transition to spatiotemporal chaos, are quali-
tatively similar to the more realistic case in which the
standing wave pattern near onset exhibits square symme-
try. We first obtain the stability boundaries of the line
pattern for either phase (Eckhaus and zigzag) or ampli-
tude (TAM) instabilities. Numerical integration is then
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used to study pattern selection above onset, and a transi-
tion to spatiotemporal chaotic states mediated by a TAM
at finite ~.

The model equation that we study in this paper is

&i& = —yf + if 0" + —(1 + ~')0 + (i —y. )Ill'0 ~

where P(x, y, t) is a two-dimensional complex field. The
fluid surface displacement from planarity h(x, y, t) and
the velocity potential at the free surface @(x,y, t) can be
expressed in terms of P(x, y, t) as h = exp( —iAt/2)P +
c.c., and @ = —i exp( —iAt/2)P + c.c., respectively
[11,13]. A is the angular frequency of the externally
imposed sinusoidal acceleration f0cos(At), with fo its
amplitude. Equation (1) has been made dimensionless

by choosing 2/A as a unit of time and 1/qo as a unit
of length. The critical wave number qo at onset is
determined by the condition for subharmonic resonance,
A/2 = ~(qo), where cu(q) is the linear dispersion relation
of surface waves [for capillary waves, ~~(q) = I q3/p,
where I is the surface tension and p the fiuid den-

sity]. The linear damping coefficient y = 4vq&&/A
[= p(4p2A/I 2)'t-' for capillary waves], with v the
kinematic viscosity of the quid. The nonlinear damping
coefficient y, is of the order of y, but, at the level of this
simplified model, it has to be considered phenomenologi-
cal [Eq. (1)]. The quantity e = ( f —y)/y is the distance
away from threshold of the primary instability, where

f = foqo/A2 is the dimensionless driving amplitude.
The quiescent solution P = 0 becomes linearly unsta-

ble against a periodic perturbation of wave number q
for e ) e,. (q) = Ql + [3(1 —

q )/4y] —1. The curve
e = e,. (q) is the neutral stability curve that separates the
region of stability [e & e,.(q)] from the region of insta-
bility [e ) e,.(q)]. Given a wave number q, Eq. (1) has
an unstable (growing) linear eigenmode and a stable (de-
caying) linear eigenmode with eigenvalues A = —y ~
/f2 —[3(1 —q2)/4]2, respectively. The mode q = 1 is
critical at onset [e,. (q = 1) = 0], which corresponds to
the onset of subharmonic resonance of Faraday waves.
For e ) 0, stationary line solutions can be approximately
found by considering a one-mode Galerkin approximation
Po(x, q) = nqe'~& cos(qx) + 6(n3) with

q
—1 —4yy„/3 + Q(q —1 —4yy„/3) + (1 + y„)[16(f —y )/9 —(q2 —1)2]

q 1+ y2

sin 20~ = (y + 3y, n2/4)/f, and cos 20q = 4(q2 —1 —n2)/f Anoth. er solution, which does not exist for q = 1 and

is unstable with respect to uniform amplitude perturbations, will not be considered here. We have studied its linear
stability against long wavelength phase modulations of the line solution: P(x, y, t) = $0(x, q) + a(x, y, t)6/0/Bx We.
find an Eckhaus stability boundary given by

3(n + 1 —q) —n + 1 —
q q + =2y„q n (2y+ y„q)—y, q 2y+ —y„q —n + 1

—
q

and a region of instability against zigzag perturbations
given by n2 & 2(q —1) [11]. Figure 1 shows the
Eckhaus and zigzag stability boundaries for y = 0.1

(experiments on low viscosity fiuids have been per-
formed in the range y = 0.05 —0.07 [3], and for

y = 0.07 [4]) and y„=0.05. The reentrant shape
of the Eckhaus boundary is a direct consequence of
the existence of a small nonlinear damping coefficient
y„. In the limit of small e (e « y2), the Eckhaus
boundary is symmetric around q = 1, and is given by
e = (27/32y ) (1 —

q ), whereas, for y„=0, the stable
region is a & Ql + [3(1 —

q )/8y] —1 and q ) 1,
which lies entirely in the region q ) 1. The parabolic
stability boundary for e « y2 (y„W0) can also be
obtained from a stability analysis of a standing wave am-
plitude equation, obtained by assuming that the amplitude
of the decaying linear eigenmode of Eq. (1) adiabatically
follows the growing eigenmode in Eq. (1), in analogy
with Milner s calculation [9). This approximation,
however, fails to reproduce Eq. (2) for larger values of e.

It is useful at this point to discuss why the order pa-
rameter P in Eq. (1) is complex. Very close to the

primary instability (e = 0), it is possible to obtain a re-
duction to a real order parameter equation that corre-
sponds to a standing wave amplitude equation. However,
as a result of the small viscosity limit studied, the lin-

early stable mode of Eq. (1) is only very weakly damped
(iA i « 1), and its dynamics may remain important for
e ) 0. This is indicated by the fact that the Eckhaus sta-
bility boundary [calculated from Eq. (1)] and that given
by a standing wave amplitude equation only agree for
e « y~ (with y„&&1). Furthermore, a stability analysis
of the line solution based on the standing wave amplitude
equation incorrectly shows that this solution is always
stable against a TAM [9].

Stability against transverse amplitude modulations
can be studied by considering that P(x, y, t) = [1 +
a(y, t)]go(x, q), with a(y, t) = ao(t) cos(gy) (0 small)
and linearizing the resulting equation for a(y, t). The
TAM unstable region is given by

16(q ) 4y q yy nq' (3)

and is shown as the shaded region in Fig. l. The line
solution can be unstable against a TAM of finite wave
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FIG. 1. Stability diagram for y = 0.1 and y„=ooz in the (q, e)
plane: boundary of existence of stationary line solutions (dashed
line, S). For q ) Ql + 4yy„/3 the bifurcation is subcritical,
and this portion of the line 5 corresponds to a saddle node
bifurcation; q „,the peak of the azimuthally averaged structure
factor calculated numerically (circles with error bars indicating
the half width at half maximum of the peak); neutral stability
curve (thin solid line, N); Eckhaus stability boundary (thick
solid line, F); zigzag stability boundary (long-dashed line, Z).
The TAM unstable region is the shaded area.

random numbers, of zero mean and variance 10 4. A
typical run length is 105—106 time steps.

Fourier modes with wave numbers close to q = 1

are seen to dominate in the early linear regime. As
the system enters the nonlinear regime, the azimuthally
averaged structure factor exhibits a dominant peak at

q = q „(t)which is seen to shift away from 1 and toward
the Eckhaus stable region for all values of a, i.e., the
dominant wave number of the line pattern shifts to q ~ 1.
The asymptotic value of q,„atlong times is shown by
the circles in Fig. 1. The error bars indicate the half width
at half maximum of the peak in the azimuthally averaged
structure factor. As predicted by the stability analysis,
for sufficiently large values of a (e ~ 0.05) q „enters
the TAM unstable region before it can reach the Eckhaus
stability boundary.

We finally describe the asymptotic temporal depen-
dence of the configurations as a function of e. The
results reported correspond to y = 0.1 and y, = 0.05,
but they are qualitatively similar to other cases provided
that y„W0 (for larger y„,both the appearance of the
TAM and the transition to chaotic states are seen at
larger e). An almost perfect and stationary line pattern
is found for e = 0.02 [Fig. 2(a)]. As e is increased to
e = 0.05 a very slowly varying transverse modulation of
the line pattern is observed [Fig. 2(b)]. The wavelength
of the modulation is 3.240, with Ao = 2~ the critical

number Q, but it is always stable against a TAM of
wave number Q ~ 0. Thus, the TAM instability is an
amplitude instability [14]. If y, = 0, all line solutions
are unstable to TAM. If, on the other hand, y, 4 0,
a region of wave numbers around q = 1 is stable.
At fixed y, increasing y„ increases the width of this
stable region. For finite y„, the Eckhaus and TAM
stability boundaries cross at e = e&(y„) (e&& = 0.1 for
y„=0.05 in Fig. 1). For e ( e&&, there is a region of
stability for the stationary line state against both Eckhaus
and TAM perturbations (although it is possibly unstable
against zigzag perturbations). As a is increased away
from threshold, the band of stable states shifts toward
the region q ) 1, and for e ) a& all solutions that
are within the Eckhaus stability boundary lose stability
against a TAM. Therefore the reentrant shape of the
Eckhaus boundary, and the fact that it crosses the TAM
boundary at e = e && (y„),provides a mechanism for a
finite threshold for the TAM instability.

We next turn to the results of our numerical calculation.
We have used a pseudospectral method to solve Eq. (1) on
a square grid of size 64~ x 64~, with periodic boundary
conditions. The number of Fourier modes used for each
axis is 256. Time stepping is performed by a Crank-
Nicholson scheme for the linear terms (including P*), and
a second order Adams-Bashforth scheme for the nonlinear
terms. The time step used is At = 0.1. The initial
condition P(x, y, t = 0) is a set of Gaussianly distributed

692

(a) a=0.02 Time=50000 (b) a=0.05 Time=50000

(c) a=0.10 Time=58000 (d) a=0.30 Time=54000

FIG. 2. Typical configurations of Re[/] at long times (shown
in gray scale) for four values of e, starting from a random
initial configuration. The configurations of Im[P] are similar.
Note that the surface displacement away from planarity is given
by h(x, y, t) = 2(cos(At/2)Re[/] + sin(At/2)lm[ttt]), and that
given the isotropy of Eq. (I) any orientation of the pattern is
equally likely.
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(a) a=0.05 Time=50000 (b) e=0.3 Time=54000

FIG. 3. Zeros of the modulus liPll (llPll ~ llPll, „/8 is con-
sidered a zero) for two values of a and the same configurations
shown in Fig. 2.
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FIG. 4. (a) Time series of Re[/] at a fixed spatial point.
(b) Time series of a Fourier mode Re [P(q„=0.75, q, = 0)j.
(c) Power spectrum of the time series shown in (a). (d) Power
spectrum of the time series shown in (b). The dashed line
represents a power law with an exponent of —4.

wavelength at onset. The periodic and almost station-
ary modulation suggests that the finite amplitude modu-
lated pattern at e = 0.05 can be described by P(x, y) =
Ap[1 + bp cos(Qy)] cos qx + . . . Figure 3(a) shows the
zeros of llPll (liPll ~ ilail, „/8 is considered a zero).
They all originate from the cos qx factor. Hence the TAM
is weak enough that ill + bpcos(Qy)ll ) O. At s = 0.1

[Fig. 2(c)], the modulation becomes stronger and addi-
tional zeros of ilail appear. We call the regions in which
the slowly varying component of ilail is zero a TAM de-
fect. At this value of e the wave pattern becomes time
dependent, with the temporal variation of the wave pat-
tern coming mostly from the motion of TAM defects. At
a = 0.3 [Fig. 2(d)], the length scale of the modulation be-
comes smaller, and the density of TAM defects increases
[Fig. 3(b)]. The wave pattern can be roughly described
as an erratic motion of TAM defects superimposed to
an otherwise stationary line state. In order to character-
ize the temporal fiuctuations of the wave patterns in this
state, we have calculated the power spectrum of a time

series of both P at a fixed point in space and the ampli-
tude of a fixed Fourier mode. Figure 4 shows the time
series of Re[/] at a fixed point [Fig. 4(a)], and of the
Fourier mode q = 0.75 [Fig. 4(b)], and their correspond-
ing power spectra [Figs. 4(c) and 4(d)] for a = 0.5. The
power spectra are broadband and decay as a power law of
frequency ~ ' with z = 4.0 for frequencies in the range
of 2 X 10 3 ( 2'/fI ( 2 X 10 2. Similar power law
decay of the power spectra is also observed for e = 0.3.
The power law decay and the value of the exponent z are
in good agreement with experimental results [3].
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