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Complex Classical Trajectories and Chaotic Tunneling
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Tunneling phenomena in the presence of chaos are investigated. Several remarkable features, which
form a sharp contrast to the tunneling in the integrable system, can be well understood in terms of the
semiclassical theory including complex classical trajectories. In particular, it is found that the dominant
contribution to the tunneling regime comes from many complex branches which are not connected
with any real manifolds and are linked at caustics to form the bifurcation chains. Chaotic tunneling is
proposed as a new class of tunneling phenomena which originate from the complicated nature of the

complex dynamical system.

PACS numbers: 05.45.+b

An underlying idea of the semiclassical theory is not
only to provide us with an approximate solution to the
Schrodinger equation but to describe or understand wave
phenomena in terms of language of rays or classical
trajectories [1]. Indeed one can obtain a clear picture of
quantum-classical correspondence for integrable systems
to which the semiclassical theory is successfully applied.
Although one encounters serious difficulties once the
semiclassical theory is applied to chaotic systems [2],
optimistic scenarios to overcome them, which rely on our
detailed knowledge of real classical orbits, are recently
proposed [3].

On the other hand, as already pointed out more than
20 years ago, in addition to real classical trajectories
complex trajectories are also needed to describe quantum
mechanics more properly [4]. In fact, the transition to
classically inaccessible regions can be realized only by
including complex classical trajectories. Tunneling is a
typical example of such a purely quantum mechanical
phenomenon. An attempt to utilize complex trajectories
has been actually undertaken in the field of chemical
reactions, and it has been shown that classical S-matrix
theory is improved by including complex trajectories [5].

Although the necessity of complex trajectories is rec-
ognized and generic systems are known to show chaotic
behavior, the nature of tunneling and the role of com-
plex classical orbits in classically nointegrable systems
are still unclarified. The purpose of the present Letter
is, therefore, to aim at a semiclassical understanding of
tunneling phenomena in the presence of chaos in terms
of complex classical trajectories. In particular, we pro-
pose a new class of tunneling phenomena we call chaotic
tunneling, which originates from complicated natures of
complex classical trajectories.

The model system we use here is designed to extract
the tunneling effect as purely as possible and to avoid
the confusion caused by the transition due to the real
classical trajectories. We consider the following kicked
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rotor system:

H = Ho(p) + V(B) D> 8(t — n), (1)

where '
Holp) = & PP i, @
V(6) = K sinf . 3)

In the bounded region |p| < pp, this system is approxi-
mately equivalent to the kicked linear oscillator [Ho(p) =
wp)], which means that there exists a Kolmogorov-
Arnold-Moser (KAM) band whose width is controlled by
pp- Outside the region |p| > pp, it tends to the well-
known standard mapping [Ho(p) = p?/2]. A phase space
portrait for K = 1.2 and pp = 5 is depicted in Fig. 1(a).
Throughout the present analysis we take the time-
domain approach [6] and first observe the time evolution
of a quantum state which is the momentum eigenstate with
po = 0 included in the KAM band. In the very early stage
of the time evolution (+ = 1-3), the quantum mechanical
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FIG. 1. (a) Poincaré mapping for K =12 and pp =S5.
(b) Quantum probability distribution function in p representa-
tion at + = 6. The Planck constant is taken as i = 27 X %
The broken curve indicates the real Lagrangian manifold at
t = 6. The arrows inserted show the positions of “cliffs.”
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tunneling occurs only from the positions where the real
Lagrangian manifold is folded. The real Lagrangian
manifold we use here is a set of classical trajectories
which initially satisfy the conditions py = 0 and 6y €
[0,27]. These points on the Lagrangian manifold just
correspond to caustics, and tunneling in the very initial
stage can be explained as the penetration starting from
caustics. This mechanism is essentially the same as
tunneling in the integrable system. As is shown below, a
simple interpretation using complex classical trajectories
is possible.

However, as time proceeds, more complicated tunneling
patterns become visible. Indeed, as displayed in Fig. 1(b)
the appearance of the amplitude distribution |¥(p, 1)|* at
t = 6 does not seem to allow us the simple interpretation
mentioned above. We immediately notice the following
remarkable features in the tunneling regime: (1) As p
goes out of the range occupied by the real Lagrangian
manifold [see Fig. 1(a)], the probability amplitude decays
very rapidly through the KAM regular regime at the rate
expected for the completely integrable linear oscillator,
i.e., ps = o, indicated by the dashed curves in Fig. 1(b).
(2) The initial rapid decay soon changes to slower decay
beyond values of p corresponding to the boundary between
the integrable region and the chaotic sea. (3) As p goes
further into the chaotic sea, the probability amplitude
forms plateaus, which are accompanied by complicated
oscillations. (4) The amplitude again decays with several
“cliffs” (indicated by arrows in the figure) located at
apparently random positions. Extensive numerical study
reveals that such features are common at arbitrary time
evolution steps. Thus, one can regard the features listed
are typical at least for the present model.

The semiclassical wave function in the momentum rep-
resentation is expressed as a sum over classical trajecto-
ries which satisfy the boundary conditions, p(0) = po and
p(t) = pi,

W(pi1) = D ApexpliS(pi, po,1)/Fi + ¢il, (4
k

where each trajectory is labelled by the index k. Ag
Sk is the classical action

denotes the amplitude factor.

along the classical trajectory obtained by solving Egs. (2)
and (3) in the extended phase space (—o = § = «) [7],

Sp = Z {Ho(pjx) + V(6;4)}

J

=i
t

- Z(Pj,k = Pi-14)0)k 5)
j=i

and ¢, represents the phase correction associated with the
Maslov index.

One efficient method to describe the tunneling process
is to take into account complex classical trajectories which
are introduced by analytically continuing the dynamical
variables into the complex plane. The analytical con-
tinuation in the present case is carried out by extend-
ing the initial angle 6y, to the complex domain, i.e.,
6o = & + in(é,7 € R), with the initial and final mo-
mentum real valued. By solving such a kind of shooting
problem, we have actually found an enormous number of
candidates which can contribute to the semiclassical wave
function. Figure 2(a) gives a set M, of initial Lagrangian
manifolds whose initial and final momenta take both real
values, i.e.,

M, ={(&,m)lpo = 0, Rep,(¢ + in) ER,

Imp,(§ + in) = 0}. O]
Since we now fix the initial momentum as py, = 0, the
final momentum p, is a unique analytical function of 6.
Therefore, if we choose an arbitrary initial point on the
complex Lagrangian manifolds M, and iterate it by ¢ steps,
then we necessarily reach a certain point with a real final
momentum, but its explicit value p, cannot be read from
Fig. 2(a).

In Fig. 2(a), the horizontal axis 7 = O represents the
real Lagrangian manifold which contributes to the semi-
classical wave function but does not escape from KAM
band regime. Thus, the tunneling observed in Fig. 1(b)
is only described by complex Lagrangian manifold. The
two branches connecting with the real Lagrangian mani-
fold (» = 0) at the caustics are complex branches which
describe the feature (1), i.e., the first rapid decay through
KAM integrable regime. We call these complex branches

FIG. 2.

(a) A set of initial Lagrangian manifolds M, on the &-n plane at ¢ = 6.

(b) Magnification of a small region on ¢-7

plane. (c) A Laputa chain cut from (b) (left-hand side) where the circles inserted represent the position of the complex caustics
and dashed lines denote the parts removed by the Stokes phenomenon. The corresponding Lagrangian manifolds projected onto
the (Ref,., p;) plane (right-hand side) where dashed lines denote the parts removed by the Stokes phenomenon.
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natural complex branches: They give dominant contri-
bution to tunneling if the system is completely integrable,
i.e., pp — oo. In the integrable limit, the natural branches
yield the rapid decay indicated by the dashed lines in
Fig. 1(b). These branches are also the origin of tunnel-
ing observed in the very initial stage.

Natural branches reproduce the penetration through the
integrable region, but they are not sufficient to explain
the remaining features (2)—(4). The origin should be,
therefore, attributed to the infinitely many self-similar
branches which are no more connected with the real
Lagrangian manifold. We call such complex manifolds
which float in the large imaginary domain of complex 6,
plane Laputa branches which are named after the floating
island appearing in the famous story Gulliver’s Travels.

Among these enormous numbers of Laputa branches,
we have adopted a heuristic or semiempirical criterion
that only the Laputa branches having relatively small
imaginary parts of #p are taken into account. This is
based on the observation that if the imaginary part of
the initial angle is small, then the imaginary part of the
classical action which governs the amplitude factor of
each contribution is also small. Indeed, slow decay of
the wave function described in (2) is attributed to large
scale branches hanging down from a cloud of Laputa
branches [see Fig. 1(a)] [8]. Various features of the wave
function described in (3) and (4), however, cannot be
explained without considering detailed structures of the
Laputa branches in the cloud.

We show in Fig. 2(b) the magnification of the region
where a large scale branch disappears into the cloud. In
most cases, a Laputa branch folds to form a petal of a self-
similar flowerlike object. In some cases, a Laputa branch
extends between different flowerlike objects. Surprisingly,
the final momentum p, ranges from —o to +o as &-7y
moves along each branch. This fact seems to suggest that
each branch contributes to the wave function at all values
of p. However, not all of them contribute significantly to
the wave function: It is found that the sequences of Laputa
branches running through the channel between flowerlike
structures indicated by the hatched region crucially con-
tribute to the wave function, giving rise to features (3) and
(4). We call such a sequence Laputa chain.

We describe the relationship among the contributions
to the wave function from different constituent branches
of a Laputa chain of Fig. 2(c) cut out from Fig. 2(b).
Figure 3(a) depicts the corresponding semiclassical wave
functions for the three successive branches taken from
the Laputa chain. A striking feature is that the wave
function on a branch, say 2, decreases in the opposite
direction to the first wave function. Similarly, decaying
character of the wave function given by the branch 4 is
opposite to that of the branch 3. Namely, wave functions
with reversed decaying character appear alternately along
a single Laputa chain.

We present here more detailed descriptions based
on our numerical observations. Note that each of the
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FIG. 3. (a) Individual semiclassical probability distributions,
each of which corresponds to the Laputa branch shown in
Fig. 2(c). The dashed lines represent the parts cut off by the
Stokes phenomenon. (b) Semiclassical probability distribution
obtained by summing up all dominant contributions. All
parameters are the same as in Fig. 1(b).

constituent branches is composed of three characteristic
sections labeled by a,b, and ¢. Each wave function
decays rapidly and then forms a plateau. It suddenly
decays again, forming a cliff. On the £-7 plane, the steep
gradient of the wave function corresponds to the section
¢, where the imaginary part of the action ImS, takes a
negative large value. Such an explosion of probability
amplitude is unphysical and should be removed. This
operation is justified from the following observations.
The branch 2 approaches close to the neighboring branch
1 at the joint between two sections b and c¢. Between
the two branches there is a complex caustic whose final
momentum p; has a nonzero imaginary part, and its
projection onto the &-7n plane is shown in Fig. 2(c)
as a circle. It is at this p; that the contributions to
the wave function from the branches 1 and 2 cross
with each other, exhibiting reversed decaying behaviors
as is shown in Fig. 3(a). Close to the caustics, there
will be a branch exhibiting exponential explosion which
should be unphysical and cutoff because of the Stokes
phenomenon [9]. The branch section ¢ is just such
an unphysical one. To locate the position where the
unphysical branch section is cut off, we have to know
the precise locations of the Stokes line. Unfortunately,
they cannot be determined because of the lack of a theory
of higher-dimensional Stokes phenomenon [10]. As a
working hypothesis, we cut off the unphysical branch
section when the sign of ImS; changes from positive to
negative. This hypothesis works very well to reproduce
the fully quantum mechanical wave function as will be
demonstrated later. Much improvement is gained if one
employs the principle of exponential dominance [11].
The Laputa branch 2 again collides with the next
branch 3, where ImS; begins to decay rapidly and the
branch contributing significantly to the semiclassical wave
function is interchanged. In other words, the carrier of
tunneling probability contribution switches to the new
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branch 3. As demonstrated in Fig. 3(a), the direction
of increase of the wave function as a function of p,
is opposite, which means that if we change to the new
branch, the corresponding p, moves in the opposite
direction.

A similar collision occurs between the new branch 3
and the next generation 4, and its contribution to the
wave function varies with p, in an opposite manner. In
this way, the switching of the contributing wave function
continues along a Laputa chain. On the right-hand side
of Fig. 2(c) we depict the Lagrangian manifold projected
onto the (Ref;4,,p;) plane which corresponds to the
Laputa chain shown on the left-hand side of Fig. 2(c).
On this plane, the caustics are located where two branches
come close together. If one traces the sections of Laputa
chain shown in the left-hand side of Fig. 2(c) contributing
to the plateaus, one can find that its counterpart on
the (Ref,+, p;) plane forms a stretched object folded at
caustics. This is the manifestation of the chaos in the
tunneling regime.

Erratic oscillatory structures observed in the purely
quantum wave function is explained by the violent in-
terference among many Laputa branches whose plateau
regions have similar probability amplitude. As the La-
puta chain goes more deeply into the deep imaginary do-
main on the £-n plane, the imaginary part of caustics
between adjacent branches gradually increases, which re-
sults in the contribution from the Laputa branches with
larger n of higher generation becoming smaller. This
is explained by the fact that the slope of wave function
around the complex caustics is determined by its imagi-
nary part, i.e., Imp; or Im#;;, according to the relation
aIm{S(po, p:)}/dp, = —Im#6,+,;. The petal of the flow-
erlike structures other than those composing the Laputa
chain is accompanied by complex caustics with extremely
large imaginary part and thus does not contribute to wave
function because of the same reason mentioned above.

In addition to this gradual decrease of the plateau height,
one more remarkable fact is that the location of the cliff
moves quite irregularly as the generation changes. Several
cliffs observed in Fig. 1(b) are, therefore, a consequence of
such erratic fluctuation of the switching points.

The above scenario generating the complicated tunnel-
ing is built only on the presence of a single Laputa chain.
Further complication is added when other Laputa chains
are taken into account. In fact, besides the Laputa chain
illustrated in Fig. 2(b), several other chains have also
been discovered in search of all possible Laputa branches.
Contributions from such Laputa chains may dominate the
other Laputa chain in a certain region. This gives rise to
more complicated aspects of tunneling phenomenon.

As time proceeds, the number of Laputa branches
grows at a considerably rapid rate, and the lower bound of
the cloud of Laputa branches on the £-7 plane gradually
comes down. Along the Laputa chains persistent at
arbitrary steps the number of successive branches also
increases, and the caustics between Laputa branches

approach the real plane. As a result, the height difference
between successive plateaus becomes smaller, which
leads to much more erratic interference on them and the
creation of new cliffs.

In any case, the successive bifurcation is the origin of
chaotic tunneling. Indeed, as shown in Fig. 3(b), con-
structing the semiclassical wave function by including all
possible Laputa branches, we can well produce various
aspects in the tunneling region. The disagreement de-
tected in the oscillating structures on the plateau would be
mainly due to inappropriate location of the Stokes lines.

In summary, we have demonstrated that it is impossible
to understand the tunneling in the presence of chaos
without complex classical trajectories. In particular, the
complex branches having no connection with the real
manifold, what we have called Laputa branches, play a
crucial role to generate chaotic tunneling. The present
result strongly suggests the importance of the complex
trajectories which have not been taken into consideration
in the analysis of classically chaotic systems in terms
of the semiclassical theory [11]. In order to describe
the quantum system with the mixed phase space, deeper
understandings of the complex dynamical system are
strongly desired.
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