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Classical Self-Ionization of Fast Atomic Ions in Magnetic Fields
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In the presence of a magnetic field a permanent exchange of energy between the center of mass and
electronic degrees of freedom of the atomic ion is shown to take place. For regular center of mass and
internal motion we observe a self-stabilization of the highly excited ion on a Larmor orbit. For large
values of the initial center of mass velocity the energy transfer from the center of mass to the electronic
degrees of freedom is strong enough to allow the atom to ionize. This dynamical self-ionization effect
is studied in some detail. Although the study is based on classical mechanics, it is argued that the effect

should be observable in laboratory experiments.

PACS numbers: 32.60.+1i, 32.80.Dz

The behavior and properties of atoms in strong mag-
netic fields became in the past twenty years a field of great
activity. The paradigm of this development was the hy-
drogen atom whose spectrum and eigenfunctions are to-
day known to a high accuracy for Rydberg states up to
and even beyond the field-free ionization threshold. The
strong interest in the hydrogen atom was, in particular,
motivated by the fact that it is one of the simplest physi-
cal systems which exhibits a transition from regularity
to chaos both classically and quantum mechanically and
which allows a detailed comparison of theoretical and ex-
perimental data [1].

In the presence of an external magnetic field the
collective, i.e., center of mass (CM), and internal degrees
of freedom of, for example, a two-body system cannot
be separated. The constants of motion associated with
the CM motion of the system are the components of the
so-called pseudomomentum [2]. For a neutral system
these components commute and a complete elimination
of the CM coordinates from the Hamiltonian is possible
[2,3]. Nevertheless, the CM and internal motion remain
intimately coupled and, therefore, any change in the
internal motion has drastic consequences for the behavior
of the CM. Effects due to the inherent two-body
character of a neutral system in a magnetic field have
been investigated very recently for the hydrogen atom.
In particular, for the case of vanishing pseudomomentum
it has been observed that the transition from regularity to
chaos in the classical internal motion is accompanied by
a transition from bounded quasiperiodic oscillations to an
unbounded diffusional motion in the CM [4]. For large
enough values of the pseudomomentum (or equivalently
an external static electric field) an outer potential well
is formed supporting strongly delocalized bound states
which have been studied in detail [S—7]. By performing a
gauge independent pseudoseparation of the center of mass
motion it was very recently shown in Ref. [7] that the
potential leading to the formation of the above mentioned
outer potential well is gauge independent.
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In the present Letter we focus on charged atomic sys-
tems and particularly on the dynamics of the interaction
of the CM and internal motion for the He* ion in an ex-
ternal homogeneous magnetic field. For a charged system
the components of the pseudomomentum do not commute
and, therefore, cannot be used for a complete elimination
of the CM coordinates from the Hamiltonian. Neverthe-
less, the pseudomomentum is still useful for defining a
unitarian which transforms the Hamiltonian to a particu-
lar simple and physically appealing form [8]. The trans-
formed Hamiltonian for the He* ion takes on the following
appearance:

H =H, + H, + Hs, (1
where X
3{1=ﬁ<P—~%BXR), (1a)
.’}{2=afl—[BX(P~%BXR)]r, (1b)
ﬂ3=i(p—%BXr+%;’;—ZBXr)2
+2+uo{p +[§ - %%(M+Mo)}B Xr}z— 2762
(Ic)

where m, My, and M are the electron, nuclear, and total
mass, respectively. a = (My + 2m)/M and Q is the net
charge of the ion. B is the magnetic field vector which
is assumed to point along the z axis. (R,P) and (r,p)
are the canonical pairs for the CM and internal motion,
respectively. The Hamiltonian J{ involves five degrees
of freedom since the center of mass motion parallel to the
magnetic field is a free translational motion, i.e., can be
separated completely.

The Hamiltonians F{; and F contain exclusively the
CM and internal degrees of freedom, respectively.
describes the free motion of a pseudoparticle, which
corresponds to the ion as an entity, with charge Q and
mass M in a magnetic field. F{, contains the coupling
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between the CM and internal motion of the ion and
represents a Stark term with a rapidly oscillating electric
field determined by the intrinsic dynamics. It is the
interaction Hamiltonian #{, which is responsible for the
effects and phenomena which will be investigated and
discussed throughout this Letter.

In the following we present the results of a detailed
study of the classical dynamics for the He* ion by solving
the corresponding coupled Newtonian equations of motion
belonging to the Hamiltonian J{. This is a nontrivial
task since the long integration time necessary to observe
the different time scales occurring in the corresponding
dynamics (see below) require a fast integration algorithm
with a very high accuracy and large step size. To
achieve these goals we first performed the so-called
Kustaanheimo-Stiefel transformation [9] in order to get
rid of the singularity due to the Coulomb potential term.
For the regularization of the CM degrees of freedom
we took further advantage of the conservation of the
pseudomomentum. For the integration of the resulting
smoothened equations of motion we used a Bulirsch-Stoer
integration algorithm which proved to be very fast and
of an extremely high precision. Details of the overall
procedure will be given elsewhere. We would like to
stress that without such a procedure this study would not
have been possible.

There are several characteristic regimes of the motion
of the He™ ion in a magnetic field, of which we describe
here the three most interesting. Two frequently used
quantities throughout this Letter are the CM kinetic
energy Ecm = (M/2)R? and the internal energy Ejn =
(m/2)r? — 2¢?/r, where u = mMy/M. With the help
of the equations of motion it is possible to derive the
following equation for the time dependence of the kinetic
energy of the CM:

iECM = ea(B X R)F, )
dt
Extremal values of the CM energy therefore occur if the
perpendicular components (L B) of the CM and internal
velocities are parallel, i.e., r, || R ,whereas a strong flow
of energy occurs for the orthogonal configuration, i.e.,
r, LR.

Let us first investigate the regime for which the com-
plete phase space is regular. The internal energy and field
strength are chosen so that the Coulomb potential domi-
nates strongly over the magnetic interaction terms. In par-
ticular, we concentrate on the subset of initial conditions
with vanishing CM velocity, i.e., Vem = |[R| = 0. In the
complete absence of a magnetic field the ion would simply
be at rest. In the presence of the magnetic field, however,
the coupling term JH, induces an oscillating flow of en-
ergy between the CM and internal degrees of freedom [see
Eq. (2)]. We observe now four, by orders of magnitude
different, time scales for the CM motion. The shortest time
scale is that of a single oscillation of the CM energy and

motion which corresponds to one slightly perturbed Kepler
cycle in the internal motion. The second time scale arises
due to the electronic Zeeman term which causes a rotation
of the perturbed Kepler ellipses. The third time scale oc-
curs because of the quasiperiodic evolution of the orbital
parameters of the ellipses of the internal motion [10] and
due to the action of the coupling Hamiltonian FH,. We
find a slow oscillatory modulation of the CM and internal
motions (energy) on top of the above mentioned faster mo-
tions. Finally, on the fourth and longest time scale the CM
performs a circular motion which can be shown to be the
motion of a free pseudoparticle with charge Q and mass M
in a magnetic field with Larmor frequency w, = QB/M.
In spite of the fact that the initial CM velocity of the ion
was equal to zero we encounter on the longest time scale
the effect of self-stabilization of the ion on a Landau or-
bit. The natural question now arises for the Larmor radius
of this orbit. Since we refer to a pseudoparticle picture
(which is reasonable if the Coulomb potential dominates
the magnetic interaction), the pseudomomentum gives us
the coordinates of the center of the Landau orbit of the
CM. With the help of the equations of motion we arrive
at the following expression for the Larmor radius R, :

R, = % B X R(0) — -San«)) , 3)
where we have assumed without loss of generality that
R(0) = 0. For the above discussed situation this means
that the Larmor radius of the CM motion is completely
determined by the initial distance between the electron
and the nucleus in the plane perpendicular to the magnetic
field. All amplitudes of the oscillations on the above
mentioned shorter time scales are small compared to this
Larmor radius. We remark that the above discussed effect
of the classical self-stabilization of the ion on a Landau
orbit is a generic phenomenon for regular phase space,
i.e., it occurs for any regular initial condition.

Next, we turn to the regime of motion where the in-
ternal phase space would be completely chaotic if the nu-
clear mass were infinite. The initial internal energy and/or
the field strength are chosen to fulfill this condition. The
internal CM velocity is chosen such that the total energy
is close to the threshold £ = 0. As a characteristic phe-
nomenon of the resulting classical dynamics we observe
intermittent behavior [6] of the CM as well as internal
motion. After an initial phase of chaotic motion (with
a nonvanishing local Lyapunov exponent [11,12]) and an
oscillating flow of energy from and to the CM (internal)
motion, a sudden strong energy transfer form the CM to
the internal degrees of freedom takes place. As a conse-
quence, the available phase space for the internal motion
is enlarged and a quasiregular phase of large amplitude
internal motion follows, during which the magnetic in-
teraction dominates the Coulomb potential. The quasi-
regular phase ends with a sudden energy transfer from the
internal degrees of freedom back to the CM motion and
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consequently another chaotic phase of motion takes place.
This phenomenon occurs repeatedly.

The most interesting dynamics of the ion occurs if
we increase the values of the initial CM kinetic energy.
The initial internal energy again corresponds to a bound
Rydberg state of the ion, whereas the total energy is now
considerably above zero. After a transient time of bound
oscillations in the internal motion (energy), a strong flow
of energy from the CM to the internal motion takes
place. The internal energy is hereby increased above the
threshold for ionization, E;,, = 0, and the ion eventually
ionizes, i.e., the electron escapes in the direction parallel
to the magnetic field. Note that the motion of the electron
is confined in the direction perpendicular to the magnetic
field.

Figure 1 provides a prototype example for such an
ionizing trajectory. Figures 1(a) and 1(b) illustrate the
time dependencies of the CM energy and the z component
of the internal relative coordinate, respectively. After
the above mentioned initial phase of oscillations there
occurs at approximately 7 = 1.7 X 1071% s a sudden loss
of CM kinetic energy simultaneously accompanied by
an increase in the internal energy which causes the
electron to move away from the nucleus in the positive z
direction. The transferred energy, which is in our case of
Fig. 1 approximately 0.2 eV, corresponds only to a small
fraction of the total initial CM energy which is for our
example about 333.8 eV. This energy transfer is only
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FIG. 1. (a) The CM energy as function of time. (b) The z
component of the internal relative coordinate as a function
of time. The total and initial internal energy of the ionizing
trajectory are E = 333.68 eV and E;,, = —8.16 X 1072 ¢V,
respectively. The field strength is B = 23.5 T.
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possible due to the presence of the coupling term FH,
in the Hamiltonian (1) which involves both the internal
and CM degrees of freedom. The ionization time for
an individual trajectory depends, apart from its intrinsic
dynamics, on the field strength and in particular on the
CM kinetic energy of the ion.

In order to obtain a statistical measure for the ionization
process we calculated for an ensemble of trajectories the
fraction of ionized orbits as a function of time. The
initial internal energy was chosen to correspond to a
completely chaotic phase space of the internal motion
of the He™ ion if the nuclear mass were infinite, i.e.,
the Coulomb interaction and magnetic energies are of
equal order of magnitude. The initial conditions for the
internal motion have therefore been selected randomly
on the energy shell. In Fig. 2 we have illustrated the
fraction of ionized orbits as function of time up to 7T =
2.4 X 1077 s, for a series of different energies and for
a fixed laboratory field strength of B = 23.5 T. For an
initial CM energy of Ecy = 1.45 eV, which corresponds
to an initial CM velocity of Vey = 8.4 X 10° m/s, about
70% of the trajectories are ionized within a time of 7 =
2.4 X 1078 s, which is the tenth part of the integration
time. In contrast to this we have for Ecy = 0.27 eV
only about 30% of the ionized orbits within the total
integration time of 7 = 2.4 X 1077 s. The ionization
process depends very sensitively on the initial CM kinetic
energy of the ion. We remark that the ionization fractions
plotted are independent of the chosen gauge since they
arise from the classical trajectories which are solutions of
the Newtonian equations of motion which, themselves, are
gauge independent.

The above discussed self-ionization effect occurs also
for initial internal energies and field strengths which
belong to the regular regime. However, in this case we
need much higher initial CM velocities in order to obtain a
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FIG. 2. The ionized fraction for an ensemble of 250 trajecto-
ries as a function of time. From top to bottom, the CM ener-
gies belonging to the ionization curves are Ecy = 1.45, 0.63,
0.47, 0.34, and 0.27 eV, respectively. The initial internal en-
ergy is always Ej,, = —9.25 X 1073 eV. The field strength is
B =235T.
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substantial ionization rate. For example, for an initial CM
kinetic energy, Ecy = 27.3 eV (Vem = 3.6 X 10* m/s),
and an initial internal energy, Ej,, = —8.16 X 1072 eV,
about 13% of the trajectories are ionized within 7 =
2.4 X 1073 s, whereas for the same internal energy and
Ecm = 109 eV (Vem = 7.25 X 10* m/s) about 80% of
the orbits are ionized within the same time interval.
The CM kinetic energy necessary to observe ionization
increases rapidly with decreasing internal energy and also
with decreasing strength of the external magnetic field.
We remark that the above values of the CM energies
and velocities are well within the range of energies and
velocities for which a nonrelativistic approach to the
dynamics of the ion is valid.

All the considered values for the initial internal energy
correspond to highly excited Rydberg states of the He*
ion in a strong magnetic field. For sufficiently high ex-
cited electronic states the perturbation due to the coupling
Hamiltonian F, becomes lager than the spacing of adja-
cent levels of the internal Hamiltonian F43 [8]. As a con-
sequence, strong mixing of the electronic and CM wave
functions occurs. This quantum regime of mixing includes
the above discussed classical regime for which we observe
the process of self-ionization of the ion. Since we are deal-
ing with highly excited states for which the action is much
larger than the elementary quantum of action, we expect
the self-ionization mechanism of the ion to survive quanti-
zation. This should have implications on different areas of
physics like plasma or astrophysics for which the stability
of highly excited charged atoms in strong magnetic fields
(at finite temperatures) is a relevant question. In particu-
lar, the self-ionization phenomenon lends itself to labora-
tory experiments. In order to observe the energy transfer
from the CM to the electronic states of the atomic ion un-
der consideration we suggest the following experiment: A
fast beam of atomic ions has to be injected in a homoge-
neous magnetic field and subsequently the ions are excited
by photons whose appropriately chosen frequency is below
the threshold energy for ionization. Nevertheless, ioniza-
tion, i.e., electron emission in the direction parallel to the
magnetic field, should be observable by transfer of energy
from the CM to the electronic motion. We remark that the
typical electromagnetic decay time of the Rydberg states

of the ion is of the same order of magnitude as our typi-
cal ionization times. They are therefore competing pro-
cesses. For stronger fields and/or larger CM velocities the
self-ionization process dominates. Finally we mention that
very recently the effect of stabilization for neutral atoms
in crossed static fields has been observed [13] for a cer-
tain range of magnetic field strengths. For atoms in a mi-
crowave field, stabilization as well as enhanced ionization
can occur [14]. If at all, the present case of an ion in a
magnetic field resembles the latter case because the cou-
pling of the center of mass and internal electronic degrees
of freedom for an ion in a magnetic field implies a rapidly
oscillating intrinsic electric field.
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