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Circular Rydberg States of the Hydrogen Atom in a Magnetic Field
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Dimensional perturbation theory is used to study circular Rydberg states (~m~ = n —1 && 1) and other

large ~m~ states of the hydrogen atom in a uniform magnetic field. Because of a degeneracy between
states of increased angular momentum and states of increased Cartesian dimensionality, the accuracy
of the zeroth-order D ~ limit and a dimensional perturbation expansion improves significantly for
states with larger ~m(. In contrast to other approaches, this method is applicable to the entire range
of magnetic field strengths. Energies and expectation values are presented as functions of the field

strength.

PACS numbers: 32.60.+i, 31.50.+w

Dimensional scaling methods that employ the dimen-
sionality D of space as a variable have proved effective in
treating nonseparable problems which lack a natural ex-
pansion parameter [1]. The D ~ ~ limit often permits an
exact solution that can be used to derive accurate 0 = 3
results from a perturbation expansion in powers of 1/D
[2]. Kindred perturbation expansions have been applied
to atoms in external fields, primarily by Popov and co-
workers [3]. The hydrogen atom in a uniform magnetic
field has been treated by Bender et al. [4], who derived
a semiclassical expansion for the ground state energy in

powers of (2~m~ + 2) ', where m is the azimuthal quan-
tum number. Recently, dimensional perturbation theory
(DPT) has been applied to this problem, exploiting a new
algorithm [5] that facilitates high order calculations [6].
Here we report calculations for circular Rydberg states

((m( = n —1 » 1) and other large (m( states.
Since the D and ~m~ dependences enter the Schrodinger

equation only in the factor ~ —= D + 2~m~ —1, i.e. , enter
the physics in equivalent and interchangeable ways, inter-
dimensional degeneracies are found between states with
angular momentum ~m~ in D dimensions and states with

angular momentum ~m[ —x in D + 2x dimensions. An
expansion in powers of I/~ provides a perturbation theory
which is explicitly invariant under these interdimensional
degeneracies, i.e., DPT is equivalent to angular momen-
tum perturbation theory about ~m~ ~ ~. At D = 3, this is
identical to the expansion of Bender et al. [4]. Multielec-
tron systems also display interdimensional degeneracies,
however, the complete equivalence of angular momentum
and dimensionality is no longer present.

Unlike other methods, such as variational methods
employing spherical or Landau basis functions, DPT is an
effective method for all magnetic field strengths. This is
because every term in the Hamiltonian is involved, at least
approximately, in the equation for the zeroth-order wave
function. The accuracy of such a perturbation expansion
has been demonstrated for the lowest (nodeless) state

in the ~m[ = 0 and 1 manifolds [4,6]. However, the
method becomes even more powerful for states with
large ~m[ and hence small 1/~, because the zeroth-order
approximation is the classical (~m~ ~ ~) orbit along a
circle perpendicular to the magnetic field (z) axis.

Circular Rydberg states (CRS) have received much at-
tention. Such states were first obtained by Hulet and
Kleppner [7] and new preparative methods continue to
be devised [8]. Among the unique features of CRS are
long radiative lifetimes and highly anisotropic collision
cross sections. Since the only available dipole transitions
connect neighboring CRS, these states enable studies of
atom-cavity effects such as inhibited spontaneous emis-
sion [9]. The semiclassical nature of circular eigenstates
[3] has been investigated in studies of circular-orbit wave
packet dynamics [10]. Calculations for CRS have been
made by Wunner et al. [11],by expanding the wave func-
tion in terms of spherical harmonics, the natural basis for
the weak-field limit. From large scale computations, they
evaluated energies, transition frequencies, and radiative
decay times for ~m~ = 24 to 35 and 8 ~ 70.5 T, while en-
ergies for superstrong fields (~107 T) were obtained us-

ing the adiabatic approximation [12]. In contrast to that
work, DPT requires modest calculations and is applicable
to the entire range of magnetic field strengths.

The Schrodinger equation for a D-dimensional nonrela-
tivistic hydrogenic atom in a uniform magnetic field along
the g axis, in a.u. and cylindrical coordinates, is

F g2 g21 I 4/+3/2
+ I+

2 (Qp2 Bz2 j gp2

82 P
2

+ — @(p,B = ec(p, ~), (I)
P2 + z2

where p = ~ p, z = ~ j, 8 = ~ 8, e = ~ E, and 6 =
I/~ is treated as a continuous perturbation parameter
[6]. The magnetic field strength 8 is measured in units
m2e3c/A, 3 = 2.35 X 109 G, and the Zeeman term mB/2 is
omitted since it does not affect the dynamics.
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Ap corresponds to a pair of independent harmonic oscilla-
tors with frequencies ~i and cu2 corresponding to the nor-
mal modes perpendicular to and parallel to the magnetic
field, respectively. Thus the first-order energy is

where eigenstates are labeled by harmonic quantum num-
bers vi and P2. In the strong-field limit, these correspond
to the usual Landau (N) and "one-dimensional Coulomb"
(v) quantum numbers, respectively. In the weak-field
limit, D = 3 states may be labeled by n, k, and m [13],
where n is the principal quantum number and k labels
the energy level ordering for fixed n and m. The corre-
spondences with vt and v2 are n —k —

~m~
—1 and k,

respectively. For instance, ~vtv2) = ~00) corresponds at
D = 3 to the

~
n k ( m () =

~
100) = 1 so state when l~ = 2, the

~201) = 2p t states when ~ = 4, the ~302) = 3d 2 states
when ~ = 6, and so on, i.e., the circular states.

Expanding the wave function and energy in Eq. (3) as

Veff(p 0) + ~ y &2j (5)
j=O

Z
3

pm

(4)

4(xi tx2) = g 4, (xt, xp) 6'~ (6)
j=O

leads to an infinite set of coupled differential equations for
4, (xl, x2) and Epj, which may be efficiently computed [6]
using a recently developed linear algebraic method [5].

Some general features may be deduced from the an-
alytic expressions given above for perturbation theory

In the limit 6 ~ 0 the Schrodinger equation reduces to
a potential problem with an effective potential

Thus DPT identifies the leading approximation with the
minimum of V,rr(p, g) at p = p and g = g = 0 and
fIuctuations about this minimum with higher order cor-
rections in powers of 6. Displacements from this rigid
structure may be incorporated by introducing dimension-
scaled displacement coordinates xt = (p —p )/6' and
xq = g/6t~ . This leads to [6]

V,rf(p, O) + 8 P 8'~ A, —e 4(xitx2) = 0, (3)
j=O

where

1 & a' a' &+ 2 + tutxt
ax,' ax,')

10 100 1000

—10

10

10

10
10 100 1000

FIG. l. Energy relative to ionization threshold and expecta-
tion value (q') through first order as a function of B, for the
m = —24 even-parity manifold.

through first order. In the D ~ limit, all eigenstates
collapse to the minimum of V,ff. This minimum gives
the correct energy for the lowest (nodeless) state in each
azimuthal manifold in the zero-field limit and tends to
the continuum threshold F = (~m~ + 1)8/2 in the strong-
field limit [4,6]. The complete degeneracy is lifted by the
first-order term, in which perpendicular and parallel mo-
tions enter as normal modes of vibration. The adiabatic
approximation has been used extensively in early stud-
ies of the strongly magnetized hydrogen problem. With
the present method a similar separation enters naturally as
a starting point for the subsequent I/N. expansion, along
with the correct Landau energy (2N + ~m~ + 1) &/2 con-
tribution to the total energy through first order as 8 ~ ~.
A first-order energy level diagram for even-parity states
[7r, = (—1)"' = +1] with vl + v2 ——n —

~m~
—1 ( 10

is shown in Fig. 1. This diagram, which represents the
level structure in the large ~m~ limit, bears some resem-
blance to exact energy level spectra for lower ~m~ states
[14] except that the avoided crossings are replaced by
level crossings. These intersections occur at the loca-
tions where theratio cu~

.. ~2 is rational, such as 8 = 32.1,
where coi = 2cu2. Because of the harmonic approxima-
tion of the potential in the z direction, states which have
several quanta in this normal mode are less well described
by a first-order treatment. For instance, only three states
(instead of all ~Ov2) states) remain below the continuum
threshold at the strongest field strength shown here.

The qualitatively correct results from the first two terms
can be improved upon by including higher order terms.
For states with small )m~, I/~ at D = 3 is quite large and
for all but the smallest B these asymptotic series require
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sophisticated summation methods such as Pade or Pade-
Borel. However, for the CRS considered here, 1/Ir is
sufficiently small that simple partial sums yield highly ac-
curate results except in the immediate vicinity of avoided
crossings. In Table I we present the first few partial sums
for the energy (including the normal Zeeman term) of theI = —24 CRS with B = 3 X 10 4 (=70.5 T). This is
the smallest

~
m

~
and strongest B for a CRS reported in

the large scale calculations by Wunner et al. [11],and is
chosen because it is the one for which DPT does poor-
est. Nonetheless, by fourth order the variational result is
reproduced, and at tenth order we obtain convergence to
machine accuracy (double precision).

In Fig. 2 we plot the energy for the lowest four even-
parity states in the I = —24 manifold as a function
of B. This may be compared with Fig. 1 of Ref. [11].
Series were computed through 20th order (1 min on a
SPARCstation 1+) and convergent Pade approximants
were plotted. Pade summation is used rather than partial
sums since it does a much better job of summing
series for the more highly excited states. The Pade
sums of the energy may cross diabatically instead of
displaying avoided crossings. When this happens the
Pade approximants behave erratically in the heart of the
avoided crossing. Such behavior has been noted before
[15]. Here we simply join the curves on either side
of the intersection, where the Pade approximants do not
converge, with dotted lines so as to preserve the "no
crossing" rule.

If the quantum numbers ~vi vq) are used to label the
character, rather than the large dimension behavior, then
this labeling passes through avoided crossings diabatically
(see the discussion of expectation values below) with
the result that they follow the pattern set by first-order

10 100 1000
I ~

I

I
I
i
I

—10

perturbation theory. Indeed the actual avoided crossing
involving ~10) and ~02) occurs not far from B = 32, where
the first-order calculation predicts a crossing.

One advantage of the linear algebraic method [5] is
that the wave function terms 4, of Eq. (6) are directly
computed in a basis of independent harmonic oscillators.
From these expansions, we may compute the coefficients
of series in powers of 6 for expectation values [5]. As
shown in Table I, the rate of convergence of the partial
sums is comparable to that for the energy series. Because
the ~ ~ circular orbit lies in the z = 0 plane, the series
for (z2) begins at first order. In Figs. 1 and 2 we also
plot (z2) as a function of B, exhibiting the quality of the
first-order approximation which is especially good for the
~00) CRS. As for the energies, we plot convergent Pade
approximants through 20th order. If, in the vicinity of an
avoided crossing in the energy plot, the Pade sums of (z )
fail to converge, we connect with dotted lines the same set
of states that were joined in the energy plot.

The curves for (z2) cross at magnetic field strengths
where the energy levels have avoided crossings, as one
would expect from an exchange of character forced
by the no crossing rule. Plots of (p~) (not shown)
also exhibit the same behavior. The avoided crossings
(character exchanges) are isolated and usually sharp at

TABLE I. Partial sums for the m = —24 circular state energy
and expectation value (z~) at a field strength of B = 3 X
10 ' = 70.5 T (B = 37.5). The series for (z2) begins with the
first-order term, and both series are unchanged (to the number
of digits shown) beyond 12th order.

410

Order

0
1

2
3
4
5
6
7
8
9
10
11

12+

E(10 ' Ry)
—5.076 181 876 237 13
—5.014 796 998 599 69
—5.015 918 889 892 29
—5.015 899 510 826 58
—5.015 899 705 161 41
—5.015 899 713 911 55
—5.015 899 712 980 01
—5.015 899 713 037 12
—5.015 899 713 034 87
—5.015 899 713 034 82
—5.015899 713 034 84
—5.015 899 713 034 84
—5.015 899 713 034 84

Ref. [11] —5.015 899 7

3086.414 795 836 26
3207.951 676 065 63
3209.095 452 458 65
3209.077 579 145 55
3209.078 138 849 00
3209.078 120 371 57
3209.078 120 433 78
3209.078 120 527 51
3209.078 120 512 36
3209.078 120 514 11
3209.078 120 513 95
3209.078 120 513 96
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FIG. 2. Energy relative to ionization threshold and expecta-
tion value (z') for the four lowest circular and nearly circu-
lar levels in the I = —24 even-parity manifold. Also shown
for stronger field strengths is the lowest excited Landau level,
~v~ vq) = (10). The plots are drawn according to the quan-
tum numbers (v~ v2), which denote the character of the state:
(00), solid; [02), long dashed; [04), medium dashed; ~06), short
dashed; ~10), dot-dashed; and ~20), dot-dot-dashed. Limiting
the plots to the four lowest states simplifies the figure, although
some states carrying the ~20), ~04), and ~06) quantum numbers
over portions of the plots are excluded.
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these magnetic field strengths and energies. This is to
be expected since the perturbation parameter 6 is small,
with the result that wave functions and energies lie close
to the large ~ harmonic approximation except at avoided
crossings, at least for states with small values of v~ and
v2. Thus the quantum numbers ~v&v2) characterizing a
state run diabatically through an avoided crossing. For
example, in the avoided crossing near 8 = 25 the lowest
excited state changes from ~10) with no excitation parallel
to the field to ~02) with two quanta of excitation parallel
to the field, and consequently a larger (z ). Somewhat
sharper is the crossing near B = 154, where ~10) and
~04) exchange identities. By an infinite series of such
exchanges, the ~10) Landau state is promoted step by step
until it eventually passes into the continuum. However,
except at field strengths very close to the crossings, (z )
for the ~10) state is always very close to that for the ground
state (~00)). This is expected from wave functions that
are approximately separable in the p and z coordinates
since neither state has any quanta in the v2 mode parallel
to the field. Similar behavior is seen in plots of (p2)
(not shown). Although it predicts the correct qualitative
behavior for weak, intermediate, and strong 8 fields, the
harmonic approximation becomes increasingly poor as
the excitation rises. Despite this, the Pade sums of the
perturbation series are still strongly convergent at D = 3
unless we are close to an avoided crossing. Thus we see
that (z ) and (p ), as probes of the character of the wave
function, demonstrate that the quantum numbers v& and v2

may be used to label the states from weak to strong fields,
correlate with quantum numbers of the weak- and strong-
field limits and reAect the structure of the wave function.

We have shown that DPT provides a natural means to
study circular and nearly circular Rydberg states. For
these states the rapid convergence of the Pade sums
and, for the circular states, partial sums yield highly
accurate results with low order calculations. The quantum
numbers v& and v2 that emerge naturally from the large
dimension analysis are seen to be approximate quantum
numbers for these states from weak to strong fields
in physical three-dimensional space and correlate with
quantum numbers of the weak- and strong-field limits.
Because both energy and wave function series can be
computed, this method is well suited to the study of other
properties, such as oscillator strengths. Also, the ease
with which higher order perturbation coefficients may be

computed permits the study of the large-order behavior of
these series, which in turn should allow the calculation
of complex energies from real series and the accurate
calculation of the magnitude of avoided crossings [14,16].
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