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An infinite number of distinct d = 1 matrix models reproduce the perturbation theory of d = 2 string
theory. Because of constraints of causality, however, we argue that none of the existing constructions
gives a consistent nonperturbative definition of the d = 2 string.
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The search for a nonperturbative formulation of string
theory remains a key open problem. String theories in
two or fewer spacetime dimensions, which are exactly
solvable by matrix model methods, have been valuable
model systems; for reviews, see Ref. [1]. One notable
feature of these models is the large-order growth of
perturbation theory, more rapid than in field theory and
so corresponding to larger nonperturbative effects. This
growth was subsequently found to be generic to string
theory in higher dimensions [2].

Another notable, and puzzling, feature is a very large
nonperturbative ambiguity. There is an infinite-parameter
set of distinct d = 1 matrix models, all of which reproduce
the perturbation theory for the d = 2 string and all of
which are consistent quantum theories [3]. This has
been interpreted as the existence of an infinite number of
nonperturbative parameters analogous to the 0 parameter
of QCD.

In fact, we will argue that the situation is quite the
opposite —that none of the proposed nonperturbative
definitions gives rise to a consistent string theory, and
that the problem of finding any consistent nonperturbative
formulation of the d = 2 string remains open. This result
is a simple but unexpected consequence of a recent study
of spacetime gravity in these models [4].

To review: after diagonalizing and double scaling, the
matrix model becomes a theory of free fermions in an
inverted harmonic oscillator potential [5,6]. In terms of
a second-quantized fermion P(x, t) with x the rescaled
eigenvalue, the Hamiltonian is

dx (B,at& P —x t/It/).

The string tachyon, which is the only propagating degree
of freedom in d = 2, corresponds to the collective motion
of the Fermi surface [7]. The static solutions are given by
filling the Fermi sea on one side of the barrier, say the left,
to an energy —p, below the maximum of the potential.
In string perturbation theory, at fixed energy and fixed
number of external particles, the other side of the barrier is
irrelevant. The asymptotic region @

—~ of the string

Liouville coordinate corresponds to the asymptotic region
x —~ of eigenvalue space.

Fermions will tunnel through the potential barrier; this
is the anomalously large nonperturbative effect men-
tioned above. To define the theory nonperturbatively we
must make a prescription for the state on the other side
of the barrier. One class of theories (type I in the ter-
minology of Ref. [3]) eliminates the second asymptotic
region by modifying the potential. For example, a sharp
infinite barrier, V(x) = ~ for x ) A, leaves the perturba-
tion theory unaffected for any A ~ 0. So does any other
modification such that V(x) is —2x for x ( 0 and rises
to infinity as x oo. All such modifications give the
same perturbation theory, and all produce a manifestly
unitary quantum theory within the Hilbert space of in-
coming and outgoing fermions in the left asymptotic re-
gion (or the bosonized equivalent). Nevertheless, we will

argue that no matrix model of type I corresponds to a
consistent string theory. An alternate approach to defin-
ing the theory is to leave the potential unmodified and
work within the larger space of states of two asymptotic
regions (type II), for example, by filling the right Fermi
sea to the same level —p, . We will argue that at least
the naive implementation of this idea is inconsistent.

Since the type I matrix models are certainly consis-
tent quantum theories in their own right, why do we
assert that they correspond to inconsistent string theo-
ries? The additional consistency condition we impose
is causality For example. , the nonperturbative dynam-
ics must conserve the gravitational mass, which can be
measured by scattering experiments arbitrarily far into
the asymptotic region. That this is a nontrivial condition
follows from the rather convoluted way that gravitational
physics is encoded in the matrix model [4]. In fact, the
d = 2 string must satisfy an infinite set of such causality
conditions.

Rather than gravitational scattering, we will focus on
the simplest process that leads to a causality condition,
namely 2 1 bulk tachyon scattering. That is, a pair
of incoming tachyons have an amplitude to scatter into
an outgoing tachyon before reaching the Liouville wall.
This amplitude is nonzero because the operator product of
three tachyon vertex operators contains the identity, but
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x ( Qpz + 2p, . These are conserved because

( —x —p)e (—x + p)e'

out ~

jlL

are constants of the motion in the inverted harmonic
potential. For perturbations which are not too large, the
Fermi sea can be described in terms of its upper and
lower surfaces p (x, t). Asymptotically, these move with
velocity 1 in the coordinate q = —ln( —x),

1
p (x, t) —~x ~ —e (t -+ q),

X

FIG. 1. Two tachyons in an incoming pulse can backscatter
into one (dashed line) at a given point A. In the matrix model
all tachyons pass through the turning region B. The nonlo-
cal renormalization (2), vertical arrow, produces the outgo-
ing wave.

does not occur in the matrix model because a small free-
fermion pulse will always travel to the turning point x =
—$2p before refiecting. The difference arises because of
the nonlocal relation between the string tachyon and the
collective field of the matrix model [4,8].

Let us briefly review how this comes about. Compari-
son of the matrix model and string 5 matrices shows that
the respective tachyon fields are related in the asymptotic
region by the so-called "leg pole" factor

( St)tt= ( ) S(y, i), (2)

where the bar identifies the matrix model field. The string
tachyon S is a function of (t) and t, while the matrix
model tachyon S is defined as a function of q (logarithm
of the eigenvalue, defined below) and t. Equation (2)
relates the @ dependence of S to the q dependence of
S. This transformation is nonlocal, and gives rise to bulk
scattering as shown in Fig. 1. To analyze this it is useful
to introduce the conserved charges [9]

dp dx
v „=e'" ' (—x —p) (—x+ p)", (3)

F—Fo 2m

with Poisson bracket algebra

1v „v „]= 2(m'n —n 'm)v + 1„~„-1. (4)

The phase space integral (3) runs over the interior F of
the Fermi sea, minus the interior Fo of the static sea,

Evaluating the charge (3) in the limits t ~ ~~ gives a
relation between the incoming and outgoing waves,

Vmn

2n

2qr(m + I)

2m

2qr(n + 1)

tn —m)(t —
q)([ (t )]m+1

p
—m+1]

(n m)(t+q)([ —
e(t + q)] +1

p
—n+1 (8)

The 2 1 bulk scattering is now derived as follows.
To resolve the bulk scattering we use narrow wave
packets as in Ref. [4], so the leading behavior as t + @ ~
—(x) comes from the first pole in the renormalization (2),
at 6@ = 1. Near this point the renormalization factor is
(qr/2) 't (t) ~

—I) ', giving

21/4
lim S (t+ @)=—,e'

t+ @~—cc 7T' '
21/4

t

7T 1/4 —co

dt'e ' S (t' + P)

dt'e ' S (t' + @)

2
—3/4 1/4 t+ Q »o.

In the second line we have used the narrowness of the
wave packet to extend the range of integration, and in the
third we have noted that the result is simply proportional
to the conserved charge v]o. Now expressing this in terms
of the incoming field gives

where the upper and lower signs refer, respectively,
to the incoming and outgoing waves. The incoming
and outgoing parts of the canonically normalized matrix
model scalar are related to the perturbation of the Fermi
sea by

1
t)qS (t + q) = — (e (t +- q) —pj.

2 qr

/
lim S (t + tt)) =

t
e'+~

t+ p~ —oc 2—3/4

2
—1/2 r+ P

dt'e '+ ([atS+(t —P)] + p, a, S+(t —@)/J~]
dt'e '+~[S+(t' —P)] + O(p).

In the second line we have carried out the renormalization (2) in reverse, leading to a simple result after integration by
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parts. The O(p, ) term is from 1 ~ 1 scattering on the
tachyon background.

The result (10) is the same as in Ref. [4], but the deriva-
tion is actually more general. Reference [4] used a weak-
field expansion in powers of S. From the definitions (6)
and (7) the weak-field expansion parameter is r)~S+/x~.
There is a second expansion parameter, I/p, ~, governing
the string loop expansion; for convenience we assume this
to be small and focus on classical scattering. At large
x, far in the asymptotic region, B~S+/x is always small,
but the condition that a pulse remains small throughout
the scattering is B~S+ (( p„since the turning radius is

O(p, '~ ). Reference [4] required the latter inequality to
hold; the derivation above does not, because a conserva-
tion law has been used to relate the incoming and outgo-
ing waves.

This point is important, and a bit confusing, so let us

expand on it. The bulk scattering process occurs in an

asymptotic region where nonlinearities are always small,
and so is determined entirely by the cubic term in the
effective Lagrangian, known from string perturbation the-

ory to be of the form e ~S3. This must be true even for
a pulse with B~S+ —p. For such a pulse the nonlin-
earities will eventually become large, but this is a region
(the turning region of Fig. 1) in the future of the point
where the bulk scattering occurs, and so must be irrele-
vant. However, the matrix model completely obscures
this causal relationship —the "information" in the incom-

ing pulses always propagates through the turning region
before being transferred to the outgoing wave by the non-
local renormalization. The nonlinearity, even if strong,
conserves v „so the correct amplitude is obtained just
the same.

That is, all is well provided the pulse remains below
the maximum of the potential, which is to say in the
region x ( —

~p~ or B~S+ ( p, /2 jeer. A pulse which
exceeds this, shown in Fig. 2(a), will propagate to positive
x and, in the type I theories, feel the modification of
the potential. Consider, for example, an infinite wall
at A = 0: a fermion reaching the phase space point
(x, p) = (0, p) will jump discontinuously to (0, —p). The
quantities (5) change discontinuously and so the v„,„are

FIG. 2. (a) Incoming pulse in phase-space plane, extending
above the line p = —x. Filled states are shaded. (b) Later
form of the pulse, with part propagating to x = ~. With an
infinite barrier at A = 0 (dashed) the part of the pulse at x ) 0
instead is reflected (shown dashed and unshaded).

not conserved. The bulk scattering amplitude is then
not in agreement with string perturbation theory. This
is unacceptable, because the bulk scattering occurs in a
region where both the string and the weak-field expansion
parameters are small, while the strong nonlinearities occur
only in the causal future. Moreover, this is true for any
theory of type I: the quantity (—x —p)e' is negative for
incoming fermions above the p = —x line, but is positive
for all outgoing fermions.

The scattering process used in Ref. [4] to measure the
gravitational mass similarly depends upon conservation of
v20. As it happens, there is one theory of type I which
conserves v20 and so the gravitational mass, but not v~0.
This is just the theory with infinite barrier at x = 0,
because the sign jump in (0, p) ~ (0, —p) cancels when
m + n is even. However, the causality violation in 2 1

scattering is still unacceptable.
Other bulk processes require conservation of v„,o for

all positive integer m. It is not clear whether a similar
causality argument can be applied to the v„„, for m and n

nonzero, but there is another way to see that these must
be conserved, and therefore that the type I theories are not
consistent as string theories. The v for m, n 4 0 are
just the unbroken proportional symmetries of string field
theory discussed in Ref. [10],with v, +„, „~A, „,and so
should be conserved even nonperturbatively [11].

Even though we are discussing classical scattering, this
condition is nonperturbative in the 1/p, expansion, since
the condition for a large pulse is p, ( 2~sr ct„S+. That
is, the number of incoming tachyons is of order (I/p, )

The other natural nonperturbative definition of the
theory, type II, leaves the potential unmodified. Filling
the Fermi sea to the same level —p, on both sides gives a
stable state, and the matrix model is a unitary theory with
two asymptotic weak coupling regions. But even though
the v, are conserved this is not a consistent string theory,
at least with the straightforward interpretation that each
asymptotic region of the matrix model corresponds to an

asymptotic region of spacetime. The point is that a part
of the incoming fermion pulse travels over the barrier, so
that the relation (8) between v „and the left outgoing
wave e no longer holds and the correct bulk scattering
and gravitational mass are no longer obtained.

To summarize, both the type II theory as defined
above and the infinite class of type I theories have been
previously assumed to define consistent nonperturbative
string theories. We have argued that in fact none of these
are consistent, and it stands as a challenge to find any
consistent nonperturbative definition of the d = 2 string
theory. If one is to make sense of the type II case, it
is evidently necessary to identify the asymptotic region
of the string theory with some combination of the two
asymptotic regions of the matrix model. If one is to make
sense of the type I case, the mapping (2) between the
matrix model and string Hilbert spaces must be modified.
This modification will have to be rather complicated —the
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simple linear relation (2) appears to be exact as long as
the pulses stay below the threshold, while past this point
the mapping must change abruptly.

The nonperturbative formulation of string theory is
likely to involve unexpected new ideas. The matrix
model is one of the few clues available, and so it is
important to resolve the issue raised here and construct
the exact theory. We believe the correct formulation will
not involve modification of the potential, but will require a
more subtle mapping between the matrix model and string
Hilbert spaces; this is under active investigation.

One of the obstacles to progress in matrix models has
been that the number of consistent models —the number
of modifications and generalizations that one might try-
is much larger than the number of consistent string
theories. The causality condition we have introduced
is therefore a useful tool in applying matrix models to
critical string theory. For example, we have used it in
Ref. [4] to argue that the proposed matrix model black
hole of Ref. [12] gives the wrong bulk scattering at long
distance (this point is also made in Refs. [13] and [14]).
As an aside, it seems very likely that pulses which pass
over the barrier as in Fig. 2 are related to black hole
formation, so the resolution of the problem we have
presented is also likely to lead to progress in this area.

The matrix model might have been interpreted to give
evidence for the existence of a large number of non-
perturbative parameters in string theory. This would be
unsatisfactory for the ultimate predictive power of the
theory, and rather surprising as well since all parameters
in string theory are believed to be associated with back-
ground fields. Our result is thus further evidence for the
uniqueness of string theory.
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