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Dynamics of Apparent and Event Horizons
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We have developed a powerful and efficient new method in numerical relativity for locating the
event horizon to high accuracy, making possible the study of horizon dynamics in highly nonlinear
black-hole spacetimes. We analyzed and compared evolutions of the apparent and event horizons of
both Schwarzschild and Kerr black holes struck by strong bursts of gravitational radiation, and of
colliding black holes. In all black-hole spacetimes studied, the horizons oscillate with the quasinormal
frequency at late times.
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Black holes are among the most fascinating predictions
in the theory of general relativity. The essential charac-
teristics of a black hole in relativity are its horizons, in
particular the apparent horizon (AH) and the event hori-
zon (EH). The AH is defined as the outermost trapped
surface of a region in space, whereas the EH is defined as
the boundary of the causal past of the future null infinity
[1]. In this paper, we study and compare the dynamics of
the AH and EH for various spacetimes.

The AH is defined locally in time and hence is much
easier to locate than the EH in numerical relativity (see,
e.g. , Ref. [2]). Here we discuss a method to find the
EH, given a numerically constructed black-hole spacetime
going through violent processes and settling down to a
stationary state at late times. (If the numerical evolution is
stopped during the violent phase, the question of locating
the horizon is meaningless. ) In principle the EH can
be found by tracing the path of null rays through time.
Outward going light rays emitted just outside the EH
will diverge away from it, escaping to infinity, and those
emitted just inside the EH will fall away from it, towards
the singularity. In a numerical integration it is difficult
to follow accurately the evolution of a horizon generator
forward in time, as small numerical errors cause the
ray to drift and diverge rapidly from the true EH. It
is a physically unstable process. But we can actually
use this property to our advantage by considering the
time-reversed problem. In a global sense in time, any
outward going photon that begins near the EH will be
attracted to the horizon if integrated backward in time
[3]. In integrating backwards in time, we shall show
that it suffices to start the photons within a region where
the EH is expected to reside. Such a region is often
easy to determine after the spacetime has settled down to
stationarity. For example, the photons can be started near
the AH if it is known at late times, although such a choice
is not necessary. Our first generation horizon finder was

based on this "backward photon" method, which worked
well for all numerically constructed spacetimes that we
tested it on.

Building on the backward photon method, we devel-
oped a second generation horizon finder based on a
"backward surface" method, which evolves the entire
null surface instead of individual photons. A generator
of a null surface is guaranteed to satisfy the geodesic
equation [4]. A null surface defined'by f(t, x') = 0 sat-
isfies the condition

g"'Bt fB,f = 0.

Hence the evolution of the surface can be obtained by a
simple integration,

g ~ f + (g" ~ f)' g"g" ~ fo f
(2)gtt

The advantages to integrating an entire surface include
the following: (i) Equation (2) is first order, unlike the
geodesic equation used in integrating photons which is
second order and requires the initial directions of the
photons to be specified. In integrating the geodesic
equation, the photons are attracted along the normal
direction to the EH, but there is no such attractive property
in the tangential direction. Hence the trajectories of
the photons are sensitive to the initial choice in the
tangential direction, and may further drift tangentially
due to inaccuracies in the integration. This drifting may
cause neighboring generators to cross, complicating the
identification of true horizon caustics. Such tangential
drifts impose high accu"icy requirements to make an
initial surface of photons remain surface forming after
integration. In the surface method, tangential drifting
and the question of the initial tangential direction do
not exist because the only direction that a surface can
move is normal to itself. (ii) Equation (2) contains
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only derivatives of the surface and not of the metric
components themselves and is therefore less susceptible
to the numerical inaccuracies present in the metric data,
as compared to the integration of the geodesic equation.

Using this backward surface method we are able to trace
accurately and efficiently the entire history of the EH in
numerically constructed spacetimes. For an axisymmetric
spacetime representing a black hole interacting with a
gravitational wave (the first case detailed below) resolved
on a grid of 200 radial by 53 angular zones and evolved
to t = 75M (where M is the mass of the black hole), it
takes just a few minutes for the backward surface method
to trace the EH on a computer workstation, and about twice
as long for the backward photon method. We contrast our
"backward" methods with another method [5] that uses
forward integration of individual photons to find the EH.

The first case we discuss consists of a nonrotating black
hole surrounded by an axisymmetric gravitational wave
initially at a finite distance away from the hole. The system
was evolved with a code described in Refs. [6,7]. The
black hole becomes distorted as the incoming wave hits.
In time, it settles down and returns to a Schwarzschild
hole with a larger mass. Figure 1 shows the areas of
eight different integrations of the EH starting at different
places. In one case the AH was used as an initial surface
for the integration. Because the AH is inside the correct
location of the EH, the surface expands outward as it is
attracted to the correct location. In other cases, surfaces
larger or smaller than the AH are chosen as initial guesses.
Note that in all cases the surfaces are attracted to the

same surface in precise detail, as they should be. As
1

the test surfaces coincide to much less than —,oth of the
grid separation (corresponding to typical proper distances
between the surfaces of less than 0.01M) for the range
t = 0 to 40M, we have located the event horizon to such
an accuracy in this range. We have checked that all
photons fired just inside this surface will fall into the
singularity, while photons fired just outside can escape
to infinity. The inset shows an expanded view of the
early time. All surfaces computed are shown, but they
are completely indistinguishable in spite of their extremely
different starting positions, clearly showing the power
and stability of this method. At t = 0 the AH and EH
practically coincide with each other. Then the EH foresees
the coming of the wave and expands. As the wave is
falling in, after about t = 15M, the AH starts to expand
and catch up. The behavior of the AH and EH are exactly
as expected. To demonstrate that the shapes of the surfaces
are the same, we show in Fig. 2 the coordinate locations of
several of these surfaces at various times. At the beginning
of integration (t = 72.5M), the surfaces are very different.
For smaller t values, they become practically identical.

The ability to determine accurately the AH and EH for
dynamical holes opens up the possibility for the first time
of using the horizons as a tool to study black-hole physics
in numerical relativity. As a first example of this, we
show in Fig. 3 a geometric embedding of the coalescing
horizons for the head-on collision of two black holes, as
discussed in Refs. [8,9]. The embedding, which preserves
the proper surface areas of the horizons, shows not just the
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FIG. l. The area of the event horizon is traced through time
for different initial surfaces (solid lines), and compared to the
area of the apparent horizon (dashed line). The attracting nature
of the event horizon is dramatic, as all of our backward surface
integrations trace the same path, although they start from very
different initial locations. The inset shows an expanded view
of the early time results. All surface integrations are shown,
and are completely indistinguishable. The initial increases in
the surface areas in the inset near t = 0 are caused by a small
amount of energy near the horizon in the initial data.
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FIG. 2. The coordinate locations of the innermost, outermost,
and two other test surfaces used in Fig. l are shown for various
times. The initial trial surfaces are very different at the start of
the backward integration (r/M = 72,5). However, they quickly
converge to the same surface, and are indistinguishable at
earlier time. Although the coordinate position of the surfaces
looks quite spherical, their intrinsic geometry is much less
spherical.
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FIG. 3. The geometric embedding of the event horizon for
two black holes colliding head on is shown. The g coordinate
marks the symmetry axis, and t is the coordinate time (shown
only up to t = 25M). Initially the two holes are separated but
eventually coalesce into a single black hole.

In Fig. 4 we show the embedding of the equator of
the EH for an axisymmetrically distorted Kerr black hole
evolved with a code described in Ref. [12]. We also show
the generators themselves, computed from the gradient of
the surface (see [13] for more details of this procedure).
The rotation of the hole causes the generators to be
dragged along, forming the famous "barber pole twist, "
another familiar picture now calculated for the first time.
We see that the "pole" is distorted by the incoming
gravitational wave.

We can also use the AH and EH together to study
black-hole dynamics. In Fig. 5(a) we show the ratio of
the polar to equatorial circumference C„/C, of both the
AH and EH for the first case discussed above. (Note
that the horizon begins and ends as a sphere with a
Gaussian curvature that is constant to within 1 part in 106,
which shows clearly that the hole was "Schwarzschild"
at both times. This also provides a stringent test for
our event horizon finder, since it must trace a surface
backward in time as it undergoes a period of distortion,
and then return to a sphere. ) We see that the AH and EH
oscillate in precisely the same manner, despite the fact
that one is a null surface while the other is spacelike.
These oscillations of the horizons are caused by the
"quasinormal modes" (QNM) of the black-hole spacetime.
As the waves leak out to infinity and down the hole,
those going down cause the horizons to oscillate. In
the membrane point of view [14], the oscillations are
dissipated into viscous heating of the horizon membrane,
causing the horizon surface area to increase during the

topology but also the geometric properties of the horizon.
Although such a picture of the embedding is familiar, this
is the first time it has actually been computed. There have
been a number of attempts to estimate the critical distance
beyond which these initial data sets contain two separate
black holes [10], and with our method we can now say
that there are two holes for the separation parameter p,
greater than about 1.8 (corresponding to a proper distance
between horizons of about L = 7M, where M is the mass
of each hole). The horizon shown in Fig. 3 corresponds
to p, = 2.2 (L = 8.92M). We have also checked that the
surface shown gives the correct location of the event
horizon to less than one-tenth of the grid separation based
on both the convergence of null surfaces and the photon
tests before and after the coalescence. Note that before
the coalescence there is a line of caustics on the "inner
seam of the trouser legs. " Along this caustic line, the
horizon surface has a cusp, at which point only one-sided
normal vectors are defined. In this paper we use one-sided
derivatives to evaluate the right hand side of Eq. (2) at
those points. Alternatively the entire null surface can be
evolved, including the portion that leaves the horizon, so
the entire surface remains smooth and no special treatment
is needed anywhere [11]. We note that this line of
caustics is spacelike, which has been verified numerically.

FIG. 4. The embedding of the event horizon, with generators,
is shown for a rotating black hole distorted by incoming
gravitational radiation. The evolution of the equator up to
t = 75M is shown with the polar direction suppressed. Note
the barber pole twist of the generators caused by the rotation of
the hole.
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FIG. 5. The ratio C~/C, of the polar circumference to the
equatorial circumference of both the event horizon (solid line)
and apparent horizon (dashed line) is shown versus coordinate
time t for both the distorted Schwarzschild hole case of Fig. 1

(a) and the two black-hole collision (b) after the coalescence.
The dot-dashed line shows the fit of the two lowest 8 = 2
quasinormal modes to the event horizon. Both the AH and
EH oscillate at the quasinormal frequency.

oscillations as we have seen in our calculations. We show
a fit of the EH oscillation to the two lowest 8 = 2 QNM's
of the black hole as determined in linear perturbation
theory (the initial incoming Brill wave is predominantly
in the 8 = 2 mode). The fit is remarkable, showing
conclusively that both the AH and EH oscillate at the
QNM of the black hole. (The horizons oscillate at the
QNM frequency in coordinate time, as the spacetime is
basically stationary for the region outside the horizon.
Although the lapse is less than one near the horizon,
it is basically time independent, so the frequency of
waves measured in coordinate time is the same as that
measured at infinity. ) In Fig. 5(b) we show a similar
graph for the two black-hole collision case of Fig. 3,
establishing the generic nature of these results. The same
kind of oscillations is also clear in the horizon embedding
diagram Fig. 4, although here the polar direction is
suppressed.

Our method can find event horizons without knowledge
of the apparent horizon, so it should be a useful tool for
analyzing spacetimes even in cases where the apparent
horizon cannot be found (e.g. , if the time slicing does not
intersect the apparent horizon). Its impact on the numeri-
cal investigations of the cosmic censorship conjecture and
the hoop conjecture (vacuum version [15]) could prove
interesting.
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