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Replica Symmetry Breaking Instability in the 2D XY' Model in a Random Field
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We study the 2D vortex-free XY model in a random field, a model for randomly pinned Aux lines
in a plane. We construct controlled renormalization group recursion relations which allow for replica
symmetry breaking (RSB). The fixed point previously found by Cardy and Ostlund in the glass phase
T ( T, is unstable to RSB. The susceptibility g associated to infinitesimal RSB perturbation in the
high-temperature phase is found to diverge as g ~ (T —T, )», when . T T, This provides analytical
evidence that RSB occurs in finite dimensional models. The physical consequences for the glass phase
are discussed.
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One of the most fruitful methods to study disordered
systems is the replica method [1] which allows one to
average over disorder by introducing n coupled copies
of the system. Since it reduces the problem to a transla-
tionally invariant system, this method has the consider-
able advantage, in principle, to allow the use of standard
field theory techniques. However, the limit n ~ 0 has
to be taken, a rather subtle procedure. Indeed, as is well
known from the large body of works on spin glasses [2]
that the free energy functional is in general minimized, in
a glass phase, by a solution which breaks replica symme-
try spontaneously, in the hierarchical manner discovered
by Parisi [3]. Up to now, however, spontaneous replica
symmetry breaking (RSB) has been clearly demonstrated
only when a saddle point method could be used natu-

rally. This is the case in either infinite-range or mean-
field models where the saddle point method provides
the exact solution of the problem and RSB is ubiqui-
tous [4], or, as found more recently [5], in field theories
using a Hartree or Gaussian variational method (GVM)
which becomes exact in the limit of a large number of
components, in some as yet unelucidated sense. As ex-
plicitly constructed in both cases the physics of RSB
corresponds to systems breaking up in many "states" [4].
Extensions of RSB to finite dimensional systems for
which such mean-field theory is not exact have been at-
tempted [6]. However, it is far from obvious, as argued
in [7], that it is relevant in real, i.e., low dimensional
physical systems.

Another extensively tried method is the renormalization
group (RG). There replicas have been used so far simply
as a trick to eliminate disconnected graphs in perturbation
theory [8]. This procedure, however, implicitly assumes
replica symmetry before taking the limit n ~ 0. Although
the RG treats fluctuations exactly and is therefore more
accurate than mean-field theory, there is a risk that it will
miss the physics associated to RSB. Thus one would like
to link the two methods.

A good model to look for a RG that allows RSB is the
two-dimensional XY model in a random field and without
vortices (i.e., with spins S(x) = e'~~'~, where P(x) is real
valued in [—~, ~]). It is particularly interesting because
it is one of the simplest nontrivial models of a "glass"
in finite dimension, to which several analytical methods
can be applied [9—14]. It describes several physical dis-
ordered systems, such as randomly pinned Aux arrays in
a plane [13,15,16], the surface of crystals with quenched
bulk or substrate disorder [17],planar Josephson junctions
[18], and domain walls in incommensurate solids. In a
pioneering work [10], Cardy and Ostlund (CO) studied
this model using the RG. They used replicas, introduced
n coupled XY models, mapped them onto a Coulomb
gas with n(n —1)/2 types of vector charges, and con-
structed the RG equations. They then took the limit
n ~ 0 thus implicitly assuming replica symmetry. The
resulting RG equations, valid near T, , possess a nontriv-
ial perturbative fixed point for T ~ T,, at weak disorder

g = g* ~ T, —T. CO concluded that a glass phase ex-
ists, controlled by this fixed point. In this phase, one cou-
pling constant flows to infinity, a rather peculiar feature.
These results were extended in [17,19], and the disor-
der averaged correlation function C(x) = (P(x) —P(0))~
was found to grow as C(x) —B(ln~x~)2, faster than C(x)—
T In~x~, which holds in the high-temperature phase and for
the pure system.

Although there is presently agreement that a glass phase
exists in this model for T ( T, , its physical properties re-
main controversial, despite the large number of analyti-
cal and numerical studies. Two recent numerical sim-
ulations [20,21] have shed some doubt on the Cardy-
Ostlund RG. Both were found incompatible with the
C(x) —B(ln~x~)2 prediction. In the dynamics [20] it was
found that the velocity develops a nonlinear dependence on
the driving force for T ~ T, , giving evidence of a glassy
phase, but with an exponent inconsistent with the one of a
conventional dynamic RG study [11]. These simulations,
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however, seem compatible with our previous analytical re-
sults using the GVM [13,14]. We found that a one-step
replica symmetry broken solution described the glass phase
T ( T, with. C(x) —T, Inix. i at variance with the result of
CO, while C(x) —T inixed for T ) T, . Such a discontinu-
ity in the slope was observed in [21]. The simulation [20]
was performed at such weak disorder that the system size
was shorter than the length predicted by the GVM [13]be-
yond which glassy behavior can be observed in static quan-
tities. One can argue that a variational method, such as
the GVM, is approximate even in pure systems and misses
some of the effects of nonlinearities better captured by the
RG. On the other hand, this solution contains the feature
of RSB and its compatibility with numerical calculations
suggests that it has some relevance for the physics. Thus,
it would be quite interesting to have a direct evidence that
spontaneous RSB do occur in this model.

In this Letter we present such an evidence. We con-
struct RG recursion relations, for the random field XY
model, for couplings between replicas of arbitrary sym-
metry. It contains the CO recursion relations as a particu-
lar case. It allows for a more general .way of taking the
limit n 0, using Parisi-type matrices, while remaining
in the perturbative regime of the RG. The new operators
introduced in the limit n 0 are marginally relevant at
T = T, and thus can be incorporated in the framework

of RG. We show that the low-temperature phase does
exhibit spontaneous RSB. In the high-temperature phase
where the RG flows to weak coupling and is therefore cer-
tainly correct, we compute the linear response to a small
RSB perturbation. The associated susceptibility diverges
at the transition as ~ ~ (T —T, ) i', when T T, . For
T ( T, the replica symmetric How and the CO fixed point
are unstable to a small RSB. This is to our knowledge the
first physical model where this effect can be demonstrated
in a controlled way.

The Hamiltonian of the 2D vortex-free XY model in a
field of random amplitude and direction reads

H = d'x —[VP(x)]' —i1(x)VP(x)
2

—gi(x) cos[P(x)] —$2(x) sin[/(x)], (1)

where g;(x)g, (x') = 606;,6(x —x') and g;(x)g, (x') =
56;,B(x —x') are two Gaussian white noises. Equa-
tion (1) also describes flux lines with displacements u

and average spacing a in d = 1 + 1 dimensions, with

P = 2~u/a. b, is the amplitude of disorder with Fourier
component close to 2'/a and Ao is the long wavelength
disorder. Ap is generated if not present originally in the
model.

After replication of Eq. (1) and averaging one obtains

Hef f

T

—1

d x g ' V@'VP"—
b 27T

', cos (2[/'(x) —P "(x)])2' 2 (2)

where we set g, = 0. We have used for convenience

K b]
4mc 4~5p

ab T2
gab

2T2 '

and P' = P'/2. This defines the "bare'* or starting value
parameters, which of course are replica symmetric. We
now consider a more general situation where the "renor-
malized" parameters K,b and g, b have arbitrary symmetry
with respect to the group of replica permutation. We use
the parametrization

+ab ~ab ~ab ~

and define the connected part k, = gb k,b. As will be
obvious later, there is a transition at temperature T, =
4vrc in the model (1). Using Eqs. (3) and (4), this
corresponds to k, = 0, and one has more generally k, =
(T —T,)/T = r, where r is the reduced temperature.

In previous applications of RG to disordered systems,
recursion relations are established for an arbitrary number
n of replica. Then replica symmetry is assumed and the
RG equations become simple functions of n. The continu-
ation n 0 is then easily taken. In that respect the use of
replica is a trick of graph counting. One can generally es-
tablish identical RG equations directly by considering dis-

order propagators, a method which we call "replica sym-
metric perturbation theory. " However, in a glassy sys-
tem, where many metastable states exist, one can question
the validity of such a RG procedure. A crucial assump-
tion of the RG is that one can simply integrate over the
short scale degrees of freedom independently of the larger
scales to produce an equivalent renormalized Hamiltonian.
Such a separation between scales is far from obvious in
glassy systems. Short scale degrees of freedom may well
be determined by the local minimum they belong to, thus
depend in effect on larger scales. The presence of long-
range effects is supported by the massless modes found in
the expansions around Parisi's solution [6). However, the
replicated Hamiltonian is translationally invariant and all
these problems are buried in the proper taking of the limit
n ~ 0. In the case where the standard replica symmetric
limit n 0 does not work, a Parisi-type RSB might al-
low one to construct a correct RG for glassy systems. We
will therefore construct RG equations keeping the full ma-
trix structure of the couplings. Since we are looking for
a scale invariant theory near the transition, we consider
perturbation theory in 7-, in the small matrix parameters
2kab —k« —ebb, and in gab. ThiS leaVeS unCOnStrained
the degree of freedom of a constant shift of all the elements
of k, b K,q' is easily .inverted as K,b

= (1 —k, ) [(1—
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2k, )B.ab + k, b] = lab + k,b, which is valid even if the
k, b are large provided the above-mentioned parameters are
small.

The constants g,b, k b, and k,. = ~ correspond to
quadratic interactions in an equivalent fermion problem
[22]. Using standard RG methods, either on the fermion
form [22] or on the Hamiltonian (2), one can derive to
second order the general RG for the replicated system

dgab 1

dl
(2kab kaa kbb)gab + gacgbc ~

cuba b

dkab 1 2 d 7.

4 gab r

where l is the standard logarithmic scale. In these
equations a 4 b is implied. The reduced temperature 7-

is unrenormalized. The subspace of replica symmetric

parameters g, b
= g, k, &b = k is preserved by the RG

and Eqs. (5) for g, k, and r reduce to the CO equations

in the limit n = 0: dg/dl = —2~g —g2, dk/dl = 4g~.
In the high-temperature phase, ~ ) 0, the disorder g is
irrelevant and the fixed point is a pure Gaussian system
with C(x) = (P(x) —P(0)) —[T/T, + O(g)] ln~x~. The
renormalization of the off-diagonal part k contributes to
O(g), since k goes to a constant (which stays finite up
to r = 0). In the low-temperature phase, there is a fixed
point at g* = 2~i ~. However, k fiows to infinity. This is
a peculiar situation which within the replica symmetric
scheme does not lead to inconsistencies, since k does
not feedback to any order in perturbation [only averages

(P, C, P, )2 with g, C, = 0 appear]. The flow of k was
used [17] to predict C(x) —B(ln~x~) .

We now look at the RG for coupling constants param-
etrized by Parisi matrices. g, b and k,b, a 4 b, become
the functions g(u), k(u), with 0 ( u ( 1. The symmetric
case corresponds to constant functions. The independent
variables are now r, g(u), and k(u). The equations read

dg(u)
dl

= i—» + 2[k(u) —(k)3g(u) —(g)g(u)—
1

2
d v [g (v) —g (u)],

dk(u) 1

dl 4 (6)

where (k) = fp dv k(v). These functions depend on I but
this will be written explicitly only when needed. There
is now a spectrum of dimensions, given by —r + k(u)—
(k), for the operators corresponding to the nonreplica sym-
metric couplings g b. The dimension of these operators
should be small to neglect the effect of higher order
replica terms. Also k(u) now feeds back in the equation
for g(u), thus one anticipates an instability.

We first check the stability of the replica symmetric
How in the low-temperature phase. To separate the replica
symmetric part, we write g(u) = gi + e(u) and k(u) =
ki + A(u) with (e) = 0 and (A) = 0. At the CO fixed
point g = g*, kI being the running coupling constant when

g = g*, one obtains from Eq. (6) the deviations from the
replica symmetric solution to linear order:

= 2g*A(u),
de(u)

dl
dA(u) g*

dl 2

Thus the RG How is clearly unstable to replica symme-
try breaking when 7- ( 0. The eigenvalue of instability is
A = 2~r~. When r ( 0, there is no small coupling fixed
point and the liow goes to strong coupling [23]. This
is clear from Eqs. (6), since A(u) can only reach a fixed
point if g (u) —(g ) goes to zero. This is a strong in-

dication that the low-temperature phase corresponds to
a replica symmetry broken solution. To conclude un-

ambiguously on that issue, we now consider the high-
temperature phase ~ ) 0, where the RG is exact since there
is a weak coupling fixed point g(u) = 0 [and A(u) small].
By computing the linear susceptibility to small RSB per-
turbation we show that spontaneous RSB occurs at T, .

Let us define the susceptibility to RSB as follows. We
start for ~ ) 0 with a given disorder go and add a small
RSB perturbation g(u) = gp + ep(u) uniform in space.

This will result in a replica nonsymmetric part in the
correlation functions (@,(q)@b(—q)) = (B,b + k,*b)/q,
where k*b is the renormalized coupling at the fixed point
g(u) = 0. A susceptibility is defined as

A*(u) =—k*(u) —(k*) = ~ep(u),

dA(u)

dlg

de(u)
dl

= —(2r + g)e(u) + 2gA(u). (9)

At linear order, each u can be treated independently. We
perform the following rescalings: x = 2rl, e(u) = ep(u)f,
A(u) = ep(u)a, and g = 2rg. The first equation of (9) in-

tegrates to give g(x) = e "/(n + 1 —e '), where we have
defined n = 2r/gp. Defining Z(x) = (2/n) fp dy A(y) +
1, Eqs. (9) give f(x) = ne 'Z(x)/(n + 1 —e '), where
Z(x) satisfies

d Z = Z(x)e '/(n + 1 —e ') (10)

with initial conditions Z(0) = 1 and Z'(0) = 0. The
problem depends thus only on one variable n = 2r/gp.
The susceptibility is obtained from the asymptotic value
A and is ~ = lim, nZ'(x)/2.

A full solution of Eq. (10) can be obtained numer-
ically, but g can be estimated from considering the
two asymptotic regimes n » 1 and n « 1. In the first

in the limit eo 0. y should be a function of u but it
turns out that it has the above simple form. Alternatively,
one can add a quadratic RSB perturbation Bk,bV@,V@b
and define a corresponding susceptibility g as in Eq. (8).
To compute g let us expand the RG equations (6) to linear
order in ep. As can be seen from Eqs. (6), A can be
considered as linear in eo..

dg
dl
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regime n » 1, Eq. (10) becomes Z"(x) = e 'Z(x)/a
solved in terms of Bessel functions Z(x) = c

~ Ip(e /a) +
c2Kp(e '/n). c~2 are two constants determined from
the initial conditions. This gives the susceptibility in

that regime as g = zI~(gp/2r) —gp/87. . To investigate
the behavior close to the transition one has to look at
u « 1 and to match two regimes in x. For x « 1,
Eq. (10) can be written as Z"(x) = Z(x)/(n + x)2, whose
solution is a power law Z ~ (u + x) ", where v satis-
fies the golden mean equation v~ + v = 1. We define

y = (~5 —I)/2 = 0.618. The solution is Z(x) = [(1 +
x/n) ~ + y (1 + x/n)'l~]/(I + y ). When x becomes
of order 1, one can use the equation of the first regime
with n ~ n + 1. A simple matching at x = 1 gives

y ~ C(gp/2~) . (11)
We performed a numerical integration of Eq. (10) which
confirms the analytic estimates, Eq. (11), and gives C =
0.165. y' can be computed similarly from Eq. (10), with
modified initial conditions Z(0) = 0 and Z'(0) = 2/a and
has the same divergence as g. There is also a nonlinear
response in eo in the high-temperature phase. A runaway
fIow occurs for smaller and smaller values of eo when
~ ~ 0, roughly when geo ) v.

The divergence of g in Eq. (11) when ~ ~ 0 for fixed

gp shows that RSB occurs spontaneously [24] for r ~ 0.
Quantities like (@,(q)Pb( —q)) acquire a replica nonsym-
metric part. Defining q, b

= (V t/p, (x)VIPb(x)), a possible
order parameter for RSB is Q,b

= 2q, b + g, », q„+
g«b qb, . The perturbation Bk,b is the conjugated field to
Q,b. Thus y' is the inverse effective mass of Q,b whose
divergence signals an instability a Ia de Almeida and Thou-
less [25] when T ~ T, By analogy wit.h the sine-Gordon
model, a reasonable interpretation of the runaway How of
g b is that a "mass" develops for some modes below T, .
This scenario is in good agreement with the GVM [13,14],
where correlation functions become nonreplica symmet-
ric. A fraction 1 —u, of the modes become massive be-
low T„with u, = T/T, . These modes correspond, in the
Coulomb gas, to types of charges which unbind, a frac-
tion u, remaining massless (corresponding to bound types
of charges). The GVM, being nonperturbative contrary to
RG, allows for the generation of a mass.

In this Letter, we have shown that replica symmetry
breaking can be incorporated in the RG. We found new
relevant operators which break replica symmetry when
n ~ 0 for T ~ T, . The associated susceptibility diverges
in the high-temperature phase T ) T, . The replica
symmetric fixed point found by Cardy and Ostlund is
unstable. RSB is likely to have observable consequences
in the dynamics, such as breaking of the fluctuation
dissipation theorem, aging, and persistent correlations, as
in [26]. It is also probable that the static correlation
functions should be different from the one predicted by
the symmetric RG, as hinted at by the variational method.
Further numerical and experimental results would be of
great interest.
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Note added. —After submission, we received a preprint
by J. Kierfeld, where he independently considered the
instability of the CO fixed point to one-step RSB.
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