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Band-Structure and Many-Body Effects in the Dynamical Response of Aluminum Metal
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For many years, efforts to explain a double peak observed in the dynamical structure factor S(q; cv) of
aluminum —an archetype of jellium electronic behavior via inelastic x-ray scattering have concentrated
on many-body mechanisms for the uniform electron liquid. On the basis of a first-principles evaluation
of S(q; c0) for Al crystal we show that the double peak is an intrinsic feature of the response of
noninteracting electron-hole pairs. Many-electron effects, in the form of a vertex correction for the
irreducible polarizability, are found to substantially improve the agreement with experiment of the
calculated loss intensities.

PACS numbers: 71.45.Gm

Early inelastic x-ray scattering experiments performed
on several metals (Be, Al, Li) [1—4] and on other systems
(Si [1] and graphite [1,3]) revealed a then unexpected two-
peak structure in the loss spectrum for large wave vectors.
Because of the qualitative similarity of the observed
spectra (they all show the douMe peak) for systems
with drastically different one-electron band structures [1—
5], it was quickly conceded that the periodic crystal
potential plays basically no role, i.e., the spectral feature
in question was assumed to be a direct manifestation of
fundamental physics of the correlated electron liquid
which is why this problem has attracted a large amount of
attention [1—15].

Thus, over the past twenty years most theoretical stud-
ies [6—13] have addressed the excitation spectra of the
above elements in terms of many-body theories of the
interacting electron liquid in a uniform compensating
background (jellium model). Since the basic mean-
field response theory —the random-phase approximation
(RPA)—fails to produce the crucial double peak for this
model of a metal, the proposed explanations have advo-
cated the importance of various short-range correlation
processes. Self-energy effects, such as two-pair excitation
and plasmon decay of the quasiparticle states, modeled
by a simple lifetime insertion in the propagators, gained
initial popularity [6,9,11]. However, the two-peak struc-
ture produced by those (in some cases, physically appeal-
ing) many-body models has been shown to be spurious
[12,13]. The effects of vertex corrections have also been
investigated [8,10,11], although estimates of their impor-
tance are inconclusive [3,11]. In summary, it seems fair
to state that the jellium many-body approaches have failed
to provide a consistent explanation for the existence of the
double peak.

An opposite, one-electron, viewpoint has been adopted
by Schiilke et al. [4] for the case of Be—an element
which, due to its decidedly nonjelliumlike band structure
and bonding mechanism, is a prime candidate for the
investigation of the effects of the periodic potential [14].

On the basis of a two-band model, these authors have
argued that the double peak present in their x-ray data
corresponds to electron excitation into final states in a
Bragg gap. Such interpretation of the loss spectrum of Be
has received support from the recent results of Maddocks,
Godby, and Needs [15], who performed an ab initio
evaluation of the inverse dielectric matrix of this metal
within the RPA.

This leaves open the question as to the physics behind
the measured dynamical structure factor of Al [5]. Since
this element plays such a prototypical role in condensed
matter physics, this is a significant question, as it impacts
the whole area of dynamical correlations in the electron
liquid. In fact, the latest high-resolution synchrotron
x-radiation spectra of Al reported recently by Platzman
et al. [5] were again discussed in terms of jellium many-
body theories —because of the long-standing premise that,
for this "free-electron metal, " and for the frequencies of
interest, i.e. , co ~ 2coF (hcoF being the Fermi energy),
the band structure is unlikely to determine the observed
physics [5].

In this Letter we report first-principles calculations of
the dynamical structure factor of Al which clearly demon-
strate that the double peak is built into the noninteracting
electron-hole bubble, computed for "real" band electrons.
We explicitly identify the excited-state gaps responsible
for this effect. Furthermore, we show that the inclusion of
a vertex correction for the irreducible polarizability pro-
duces a systematic improvement in the quality of the theo-
retical intensities —for a strong enough vertex [16—18]
agreement with experiment [5] is quantitative for all ener-
gies. Our results suggest that a systematic x-ray investi-
gation of the dynamical structure factor for wave vectors
in the neighborhood of 2kF would be an ideal test of the
physics of short-range Coulomb correlations for the elec-
tron liquid in real metals.

In the first Born approximation, the differential cross
section for inelastic scattering of x rays is proportional
to the dynamical structure factor S(q; to) the frequency
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and wave vector Fourier transform of the density auto-
correlation function for the electrons in the solid. The
Iluctuation-dissipation theorem [19],
S(q;~) = —26 d x d'x'e ' " " Imp„(x, x', ~),

relates S(q; cu) to the imaginary part of the retarded
density-response function gz(x, x; cu), which is a quantity
better suited to direct computation. For a periodic crystal

sewe t

q G,G'
(2)

where 0 denotes the normalization volume, G is a vector
of the reciprocal lattice, and yc c (q; cu) —= g(q + G, q +
G'; cu). Equation (2) allows us to rewrite Eq. (1) in the
simpler form

S(q; rgb) = 260 Imps = p c = p(q; cg)), (3)
where the wave vector transfer q can take on arbitrary
values —in particular, outside the first Brillouin zone,
which is the wave vector domain of interest in the present
investigation.

The input to the entire calculation based on Eq. (3) is
a well-converged, self-consistent solution for the ground
state of the crystal in the local-density approximation
(LDA) of density functional theory [20]. Such a so-
lution was constructed by expanding the Kohn-Sham
one-electron Bloch states in a plane wave basis with a
kinetic-energy cutoff of 12 Ry—the electron-ion interac-
tion being described by a nonlocal, norm-conserving ionic

ps eudopotential, generated according to the Troullier-
Martins scheme [21]. We used the Wigner interpolation
formula for local correlation.

The dynamical-response calculations proceed as fol-
lows. In addition to the density-response function X, in
the many-body theory of interacting electrons one also
introduces an "irreducible polarizability" y(x, x', ~) func-
tion which contains the elementary events (electron-hole
pair excitation, electron-hole ladders, etc.) from which the
response of the ensemble of electrons is built up. This
building-up process translates into a Dyson-like integral
equation which the exact y must fulfill [22,23],

X=X+X~X (4)

where v denotes the bare Coulomb interaction. In
the Fourier representation defined by Eq. (2), Eq. (4)
becomes a matrix equation for the response coefficients
gc G (q; cu), from whose knowledge the dynamical
structure factor S(q; cu) is obtained according to Eq. (3)
[24,25].

It is instructive to consider first the S(q; cu) which one
obtains upon completely ignoring the Coulomb correla-
tions, see Fig. 1. To this end we drop the last term in
Eq. (4) and replace the exact ~ by its counterpart for
noninteracting electrons, i.e., we set X = X = X, where

~ 4 I l I2.
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FIG. 1. S(q; col for noninteracting electron-hole pairs, and its
comparison with the x-ray data for Al (Ref. [5]). The solid
curve incorporates the band structure of real Al; the dashed
curve is for jellium (rs = 2.07). The wave vector transfer q is

I 3
along the (2, 2, 0) direction; its magnitude equals 1.7kF.

the (retarded) noninteracting electron-hole "bubble" y ol

is given by
BZ

(o) fk, n fk+q, n'"-(' )= n~~. —. , +.(. +, )

X (k, n(e ' + '"[k + q, n')(k + q, n'(e' + "]k,n),

(5)
in which the sums over n and n' run over the band
structure for each wave vector k in the first Brillouin zone,
and the [fk, j are Fermi factors. Now, in a recent paper
we reformulated X~ ~ via a Green's function approach
which formally eliminated the need to perform an explicit
summation over the unoccupied bands [26]. In the present
work we have also used Eq. (5) as it stands, in which
case on the order of 40 bands are required for conver-
gence [27].

Figure 1 is striking. The S(q;co) for (fictitious) non-
interacting electron hole pairs rep-roduces the main fea
tures of the experimental data quite well. Not only is
there a prominent double peak in the theoretical spectrum,
but its energy position is rather accurately given, and so
are the intensities of the main features. Thus, Fig. 1, in
which we also show the corresponding result for jellium-
obtained from the well-known Lindhard function —makes
it unequivocally clear that the overall two-peak nature of
the loss spectrum is an inherent property of X for Al
crystal [We note that F. ig. 1 refers to exactly the same

q for which the high-resolution x-ray data of Ref. [5] dis-
1 3

play a double peak; this wave vector is along the (2, 2,0)
direction. ]

This result rules out physical mechanisms previously
proposed. First, the existence of the double peak has noth-
ing to do with the effects of the electron-electron interac-
tion [1,5 —13]—which we have ignored so far. Second,
the lower-co peak in Fig. 1 bears no relationship to a con-
tinuation of the plasmon [1,5, 11] into the electron-hole
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FIG. 2. Relevant portion of the band structure of Al needed
in the explanation of the dip in S(q; co). The right (left) panel
refers to real Al (jellium with rz ——2.07). With reference to
a q along the (1,0,0) direction, the occupied bands lie on a
plane, normal to q, which basically intersects the zone center;
the empty hands lie on the [2,0,0] Bragg plane. See text or
details.

continuum past the wave vector for the onset of Landau
damping —the plasmon is absent in the above calculation.

It is useful to visualize in more detail how the process
of electron excitation across the Fermi surface —built into
Imp~0~ —leads to the above result. Figure 2, which for
clarity in the presentation refers to a wave vector along
the (100) direction ([q~ = 1.7kF), shows the initial- and
final-state bands (identified with use of the conservation
laws of energy and momentum) which give the most
important contribution to Eq. (5) for a given frequency
in the vicinity of the dip. Such states lie in planes
which are orthogonal to q and are a distance ~q~ apart.
Full circles label occupied bands in the (010) direction,
and are representative of the dominant initial-state bands.
Empty circles identify unoccupied bands whose matrix

(o)elements control the numerical value of Imp —those
bands correspond to states in the [200] Bragg plane. From
Fig. 2 we readily conclude that the crysta/ poIential opens
up an effective excitation gap for 30 ~ hto ~ 40 eV. The
di in Imp [or S(q; tu)] for hen —33 eV is in essenceip in my
a mapping of this gap. (This conclusion constitutes a
multiband, self-consistent generalization of the two-band
model of Schiilke et al. for Be [4].)

The effects of the Coulomb interaction are investigated
in Fig. 3, in which (as in Fig. 1) our theoretical spectra
are plotted on the same absolute scale as the experimental
intensities. At the simplest level we have the RPA, in
which, again, y = bio), but we now solve Eq. (4)—i.e., the
RPA incorporates long-range correlations in y between the
otherwise noninteracting electron-hole pairs which make
up ~( I. The corresponding S(q; co) is seen in Fig. 3 to
agree rather poorly with the x-ray data of Platzman et
al. [5], particularly on the low-co side of the double peak.
Clearly, the RPA worsens the quality of the spectrum
obtained in Fig. l for noninteracting electrons.

2.0

~.6
CD

04

0.8

0)
0.4

I i I i I i I i I i I

0 10 20 30 40 50 60 70 80

m (eV)

FIG. 3. Comparison of the calculated S(q; co) for Al and the
x-ray data of Platzman et al. [5]. The wave vector q is the
same as in Fig. 1. The theoretical curves correspond to three
different choices for the vertex or local field factor G(q).
Intensities are in absolute units. See text for details.

Short-range correlations originate from higher-order di-
agrams for ~, the RPA ansatz ~ = ~~0~ being of zeroth
order in v. Here we adopt a procedure in the spirit of Hub-
bard's original treatment of exchange [22], which leads us
to a y [Eq. (4)] of the symbolic form

X = X"'l.l — (1 —G)X'"] ', (6)

where the "local-field factor'* G(q) (assumed to be static)
approximately accounts for the exchange and correlation
hole surrounding each electron participating in the screen-
ing process (G = 0 in the RPA). Alternatively, f„(q) —=

—v(q)G(q) represents a "vertex correction" [22].
In Fig. 3 we display the effects of two representative

6's. First, we have the so-called time-dependent local-
density approximation (TDLDA) for ~. In the presence
of a weak disturbance from the Kohn-Sham equation
in the LDA [20] one readily obtains GTDLoz(q) =
—v(q) ' f d'x e 'q'" dv„, (x)/dn(x), where V„,(x) is
the exchange-correlation potential for the ground-state
electron number density n(x). As Fig. 3 illustrates, the
TDLDA brings about a substantial improvement over the
RPA. Physically, this improvement is due to the approx-
imate TDLDA inclusion of the electron-hole attraction.
(For hen —70 eV the x-ray data show the onset of core
excitations, absent in our pseudopotential calculations. )

Now, the TDLDA vertex fT'DLDz = —vGTDLD~ is only
exact for the homogeneous electron liquid for q 0
(and for cu = 0). Since this vertex is q independent —a
reAection of the local approximation —it ignores the details
of the structure of the exchange-correlation hole. The
trend apparent in Fig. 3 suggests that the q dependence of
the vertex is important, and, furthermore, that a stronger
vertex is needed for ~q~ = 1.7kF. From the myriad of
published G(q)*s we have found that the one obtained
b Brosens and Devreese [16] from a numerical solutiony ros
of the time-dependent Hartree-Fock (TDHF) equation for
jellium works the best in the present case. Indeed, as Fig.1 . 3
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illustrates, the agreement with the x-ray data [5] is now
extremely good, for all energies. Numerically, this result
is traced to the fact that for the large q under consideration

(lql = 1.7kF) we have G = 1, and thus Eq. (6) yields—i.e., we basically recover the loss spectrum of
Fig. 1 for noninteracting electron-hole pairs.

It should be noted that the TDHF vertex, with its promi-
nent spike for q = 2kp, remains a controversial theoreti-
cal concept [18]. In particular, this vertex ignores the
screening of the ladders for the electron-hole attraction.
The remarkable quantitative agreement with experiment
which we have just obtained may be due to the fact that
for the high frequencies involved (in Al, hoop = 15 eV)
such screening may be ineffective. In any event, our re-
sults strongly suggest that the electron-hole vertex mani-
fests itself rather directly in the x-ray data. It would be
extremely interesting for a careful experimental investiga-
tion of S(q; co) to be performed for Al and other "simple"
metals in the neighborhood of 2kF. Such a study may help
elucidate the physics of short-range correlations in a more
direct way than the phonon probe suggested by Overhauser
and collaborators [18]. On the theoretical front, the present
work provides motivation for a full numerical solution of
the integral equation for the irreducible electron-hole ver-
tex in the presence of the actual band structure of Al.

In summary, we have shown that the two-peak structure
of the measured S(q; co) for Al is built into the noninteract-
ing electron-hole bubble —i.e., it is not a consequence of
Coulomb correlations. However, these correlations play a
quantitatively important role. Our results suggest that even
for a simple metal such as Al a proper treatment of short-
range dynamical electron correlations requires a study of
such correlations for electrons in a lattice
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Note added. —After this paper was submitted, we
became aware of a new set of measurements for Al—W.
Schiilke et al. , Phys. Rev. B 47, 12 426 (1993). (We
thank Dr. W. Schiilke for bringing this work to our
attention. ) A detailed comparison with such data will be
reported in a subsequent publication.
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