
VOLUME 74, NUMBER 4 PH YS ICAL REVIEW LETTERS 23 JANUARY 1995

Power Laws and Similarity of Rayleigh-Taylor and Richtmyer-Meshkov Mixing Fronts
at All Density Ratios
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The nonlinear evolution of large structure in Rayleigh-Taylor and Richtmyer-Meshkov bubble and
spike fronts is studied numerically and explained theoretically on the basis of single-mode and two-
bubble interaction physics at Atwood numbers (A). Multimode Rayleigh-Taylor bubble (spike) fronts
are found as h& = n&Agt2 [h, = n, (A)gt2] with n& = 0.05, while Richtmyer-Meshkov bubble (spike)
fronts are found as h& = act~' (h, = a, t~' " ) with ge = 0.4 at all A' s. The dependence of these scaling
laws and parameters on A and on initial conditions is explained.

PACS numbers: 47.20.—k, 52.35.Py

The Rayleigh-Taylor (RT) instability [1] that occurs
when a fluid accelerates another fluid of higher density
and the Richtmyer-Meshkov [2] (RM) instability that
occurs when a shock wave passes an interface between
two fluids are of extreme importance in achieving inertial
confinement fusion [3] and in understanding astrophysical
phenomena. Under these instabilities, small perturbations
on the interface grow into bubbles of light fluid and spikes
of heavy fluid. In the multimode RT instability, both the
bubble and the spike fronts grow as gt2, where g is the
driving acceleration and exhibits a self-similar behavior
with this scale [4,5]. In that case it is natural that gt2
is the only dimensional length scale of the problem after
the initial conditions have been forgotten. In contrast,
the impulsive nature of the RM instability does not
induce such a well-defined, self similar law of fluid
interpenetration. Many attempts to experimentally [6],
theoretically [7], or numerically [8—10] derive a simple
scaling law for the RM case did not result in a satisfactory
theory that could predict the nonlinear evolution of the
mixing zone. Recently, Alon et al. [11]applied a bubble
competition model to study the time evolution of bubble
fronts in both RT and RM, in the limit of Atwood number
A = 1. The front was modeled by an array of bubbles (in
2D), rising with their single-mode velocity obtained from
Layzer*s potential flow model [12,13]. Bubbles overtake
their smaller neighbors and form larger bubbles ("bubble
merger") [2,14, 15] at a rate co that was calculated from an
extended potential flow model of two-bubble competition
[11,13]. The asymptotic behavior of the A = 1 RT bubble
frowst was found to be hz = nzgt, with n~ = 0.05, in
agreement with previous studies [4,5,15]. The A = 1 RM
asymptotic bubble-front evolution was found to obey a
new power law: h~ = a~t ' with 0& = 0.4, which was
then confirmed by full 2D numerical simulations. As for
the spike front, in the A = 1 RT case it is in free-fall
[2], h, = 2gt2, exhibiting the same time behavior as the
bubble front, but with a different coefficient. In the RM
case, the A = 1 spikes fall at a constant velocity. Thus,
in contrast with RT, the A = 1 RM spike and bubble

fronts exhibit different power laws, and the mixing-zone
width cannot be described as a single power law of time.
The main purpose of the present Letter is to address the
question of the late time evolution of the RT and RM
bubble and spike fronts at all A' s. New RM scaling
laws are derived and the familiar RT scaling laws are
explained, based on the same fundamental mechanisms
of single-mode evolution and two-bubble interaction. We
thus begin by studying these two basic elements of the
model and then consider the multimode case.

Single Mode Perturbations. —We now detail our re-
sults for the RM single-mode case; analogous results have
been obtained for the RT case. We consider the insta-
bility of an interface between two inviscid fluids with
(post-shock) densities p~ and p2. The Atwood number is
A = (p&

—p2)/(p~ + p2). A shock impinges on an inter-
face perturbation of wavelength A = 2~/k and generates
a velocity perturbation of amplitude uo, as given by linear
theory [1,9,16]. After a short time of order A/U (U is
the shock velocity), there is no further interaction with the
shock [1,8, 10,17,18]. An expansion of the flow equations
to second order yields [18] u(t) = uo(1 ~ Akuot) (the mi-
nus sign is for the bubble, the plus for the spike), show-
ing that the bubble velocity begins to decrease. At late
times, the A = 1 bubble attains an asymptotic velocity of
us = (3') ' A/t [13,17]. The transition to this asymp-
totic stage occurs at a bubble amplitude of roughly 0.1 A,
as in the RT case [13]. In order to study the bubble and
spike behavior, for various density ratios, we performed
full-scale hydrodynamic simulation using LEEOR2D [5,19],
a compressible ALE code with interface tracking. The ini-
tial condition used was single cosine-mode perturbations
in velocity. The simulations were done in the incompress-
ible limit (the sound velocity was much larger than the
perturbation velocity). The bubble velocities found are
shown in Fig. 1. At A ( 1, the bubble velocity initially
decays more slowly than at A = 1, in accordance with
the second-order expansion. At late times all bubble ve-
locities approach the same asymptotic form, u& = c&A/t,
where ctt = (37r) ' = 0.11 for A ~ 0.5 and rises to about
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FIG. 1. Single-mode RM bubble velocities. We choose units
typical of shock-tube experiments [6] A = I cm and up =
I cm/ms. Note that in all RM results in this Letter (i) the
initial velocities can be related to the initial amplitude of
the interface perturbation ao and the interface jump velocity
AU by Richtmyer's formula [1,16] up = 2vrAAUap/A, and
(ii) units can be rescaled using (u ~ su, A ~ s'A, t ~ (s'/s)t)
Also plotted are the potential liow model results [13] and the
asymptotic velocity [13]. Inset: spike velocities.

c~ = 0.15 at low A' s. The spike velocities are shown in
Fig. 1 inset. The A = 1 spike initially accelerates, in ac-
cordance with the second-order expansion, and then satu-
rates to a constant velocity [8,13]. At A ( 1 the spike
velocity also initially rises and then begins to decrease,
asymptotically going as A/t, due to the development of
a rounded head that increases the drag of the light Quid.
Analogously, in the RT case, the spike reaches a constant
acceleration at A = 1 and a constant velocity at A ( 1

[2]. Thus, the total mixing zone growth rate asymptoti-
cally goes as A/t, in agreement with the analysis of the
full-shock simulations of Ref. [20]. Some physical intu-
ition for this behavior may be gained with a simplified
model for the bubble. Schematically, Newton's equa-
tion for the heavy Iluid above the bubble is pt VBu/Bt =
—cz&p~u 5 + c(p~ —p2)gV, where V is the volume of
fluid set in motion by the bubble [21]. The drag term
[22,23] Fd„g = —cop~u 5, where 5 is the bubble area
[22], is equal to the change of momentum of the heavy
fiuid per unit time by the bubble obstruction. Thus, us-
ing V/5 —A, the RM bubble velocity (g = 0) is u~—
A/t. The RT asymptotic single-mode bubble velocity is
given by a balance of buoyancy and drag, leading to
uz —$2A/(I + A)gA [23]. Similar arguments for the
spikes, replacing p& by pz in the drag term, show that
u, —2A/(1 —A)A/t in RM and u, —$2A/(I —A)gA in
RT. These results are in agreement with our numerical
simulations. Thus, the reason larger bubbles (and spikes)
grow faster is that they have a smaller ratio of area to dis-
placed fiuid volume, and therefore less drag per unit mass.
(Note that in the RT case, larger structures have less drag
and equal buoyancy per unit mass. ) This is the funda-
mental reason for the inverse cascade in both instabilities.

T~o-Bubble Competition. —We performed simulations
of two-bubble competition for both the RT and RM cases,

for various A s. The initial velocity field in this case is
a sum of two modes with wave numbers k and 2k and
amplitudes u~ and u2. This perturbation corresponds, at
early times, to two bubbles with velocities u~ ~ u2. The
RT case was previously studied in Refs. [11—15,24]. We
find that for both RT and RM cases, at early times, the
two bubbles rise independently. Later, the large bubble
expands and rises faster, while the slower bubble shrinks
and is swept downstream into the spike of the surviving
bubble. Asymptotically, a periodic array of spikes and
bubbles of wavelength 2A remains. The competition rate
is the rate at which the large bubble's velocity increases
from coexistence at a wavelength of about A to saturation
at wavelength 2A. In the RT case, we find that the compe-
tition process takes longer for smaller Atwood numbers:
The merger rate is cu(A) = cu (A = I)QA(1 + A)/2, where
cu(A = 1) is the potential fiow merger rate for A = 1

[11]. This can be explained by noting that during the
overtake phase, the larger bubble accelerates at a nearly
constant acceleration of go —0.1Ag, as was also found
in previous studies [14], its velocity increases by b, u—
$2A/(I + A) ($2Ag —QAg), and hence the merger rate
is ~ —gp/b, u —QA(1 + A)/2g/A. In contrast, the RM
merger rate is found to be very insensitive to the Atwood
number and is in good agreement with the A = 1 bubble-
competition potential liow model [13).

Multimode Fronts. —Multimode (or random) fronts
grow from initial perturbations composed of many short-
wavelength modes. The merger model [11,25] predicts
that both the RM and RT front dynamics fiow to a scale-
invariant regime, similar to that derived in Ref. [15] for
the RT case, where the bubble-size distribution scales with
the average bubble wavelength. The average wavelength
is predicted to grow as d(A)/dt = (cu) (A), and the average
bubble height is dh~/dt = (u), where (cu) and (u) are the
averages of the merger rate and the bubble velocity over the
scale-invariant wavelength distribution. In the RT case,
the model results in hz = nzgt, where n~ = (u)(cu)/(4g)
[11,25]. Using the A dependence of u —$2A/(I + A)
and co —QA(1 + A)/2 found above, we obtain the well-
known experimental and numerical relation [4] n~(A) =
An&(A = 1) [with nz(A = 1) = 0.05] [11]. In RM, (cu) =
t 'cup and (u) = c~A/t and hence hu(t) = an't ", where
0~ = cup. At A = 1 we find [11] cup = 0.4, and since
the RM merger rate cu is found to be insensitive to A, we
expect 6t~ = coo ——0.4 at all A' s. Note that the merger
rate determines the power law in RM, while entering only
in the coefficient n& in RT. The coefficient a~ can be
related to the initial conditions by considering the onset
time of the scale-invariant regime tp = gAp/up, where Ap

and uo are the average initial wavelength and velocity, and

g, a parameter of order 1, depends on the initial spectrum.
This yields az = cp/(Hug )Ap up [using Richtmyer's
formula [1] for up yields a& ~ (AAU)~', where AU is the
interface jump velocity]. Hence, the bubble-front scaling
law can be written as h~ —Ap(upt/Ap)~', showing that, in
the absence of a length scale from a driving acceleration
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(gt2), the bubble-front height is composed of the length
scales of the initial perturbation, uot and Ao. To check
these predictions, we performed simulations of multimode
RM fronts at various A s. The initial perturbations
in velocity were a sum of modes with wave numbers
kt = 7rl/L, with l = 10—40 and L = 10 cm and random
amplitudes ut such that (gut)'l~ = 8 cm/ms. Typically
200—300 zones were used in each direction, which is
adequate for the bubbles but may somewhat underestimate
the spike penetration. In Fig. 2, the bubble and spike
penetrations are plotted versus t 4. After a short initial
transient, the bubble and spike penetrations are both well
fitted by power laws in time. In Fig. 2 inset, the power-
law exponent 0 is plotted for the bubbles and spikes. We
find 0~ = 0.4 + 0.02 for all A's in agreement with the
theoretical prediction. Repeating the simulations, with
all the wavelengths multiplied by a factor q of 2—100, it
was found that 0~ = 0.4 and a& —q, in agreement with
the predicted scaling. From Fig. 2, it is seen that the RM
spike penetration is well fitted by h, = a, t~', where 0,
goes from 1 at A = 1, where the spikes fall with a con-
stant velocity, to 0, = 0& = 0.4 at low Atwood numbers,
where the bubble and spike fronts become symmetric. In
the RT instability, the spike front grows as h, = o.,gt,
where ot, /cttt is an increasing function of A [4,5]. The
present model can help in understanding the spike-front
evolution. The dominant spikes, generated by the domi-
nant bubbles, exhibit roughly the same periodicity as the
bubbles [25] [see Figs. 3(a) and 3(b)], and therefore can
be described by the same merger rate ~. The domi-
nant modes are not far from their saturation stage —the
present model shows that in the scale invariant regime
htt = b(A), with b = ctt(A)/coo = 0.26 —0.35 in RM, and
b = 0.5/(1 + A) in RT. This suggests that the evolution
equation for the spike front is dh, /dt = (u, ), where u, is
the spike velocity of a single mode when the bubble ampli

0.9 -" 0.1 ms
(b)

'

~0

0.6

0.3 0

0.6
) o

0.3
0

gO
0

6Q

O
0

0 0

tude is b A, and the average is over the bubble-wavelength
distribution. In RT, at A ~ 0.5 the single-mode spike
velocity is already saturated when the bubble amplitude
is bA, and n, /ntt = u, /uti = j(l + A)/(1 —A) [26],
while at higher A' s, the spike still accelerates at this stage,
and n, /att is lower than Q(1 + A)/(1 —A). The results
for n, /ntt, shown in Fig. 4(a), are in fair agreement with
experimental and numerical data [4,5,26]. In RM, we
find that the single-mode spike velocity (Fig. 1 inset) is
u uo(upt/A) P, when the bubble amplitude is bi At.
low A's the spikes have already reached their asymptotic
velocity (p = 1), while at higher A's they are still in
a transient stage, and p decreases with A, reaching
P = 0 at A = 1. This leads to h, —Ao(uot/Ao) ', with
0, = 1 —p(1 —OB). The results for O„shown in
Fig. 4(b), tend to overestimate our simulation results at
intermediate A's by about 20%.

In order to gain more insight into the model, we present
in Fig. 3 an analysis of a multimode RM simulation.
The early- and late-time interfaces, plotted in Figs. 3(a)
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FIG. 2. RM random bubble- and spike-front penetration (de-
fined at 90% of the heavy and light Quid volume fractions,
respectively) versus to4 Penetrations de. fined at higher vol-
ume fractions have the same 9 and higher coefficients [see
Fig. 3(e)], mainly for the spikes at high A (as in the RT case
[4,51). Inset: power-law exponent 8& and 0, .
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Fig. 3. Analysis of the A = 0.98 multimode RM simulation
of Fig. 2. (a) Interface at t = 1.0 ms, and (b) t = 4.0 ms.
(c) Bubble envelope (contour of maximum light Iluid pene-
tration), vertically offset by fixed intervals, at t = 0.1 ms
and at equally spaced time intervals between t = 1.0 ms and
t = 4.0 ms. Bubbles with a positive velocity are marked by
*'s. (d) b = hit/(A), h& is the average rising bubble height
from simulation and model prediction b = 0.26. (e) h~ from
simulation (line) and model (bold line) and penetration of 80%,
90%, and 100% heavy fiuid volume fractions (dashed).
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FIG. 4. (a) Model prediction for RT spike-front to bubble-
front penetration ratio n, /a& (full line). ~ 's, Youngs' simu-
lations [4] and ~ 's, Freed et al. simulations [5]. (b) Model
prediction for RM spike front exponent 0, (full line). ~ 's
present simulation results.
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