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Analytical Results for Scaling Properties of the Spectrum of the Fibonacci Chain
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We solve the approximate renormalization group found by Niu and Nori for a quasiperiodic tight-
binding Hamiltonian on the Fibonacci chain. This enables us to characterize analytically the spectral
properties of this model.
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Much theoretical effort has gone into the study of
one-dimensional Schrodinger equations with quasiperiodic
(QC) or incommensurate (IC) potentials [1]. Such models
are invoked to describe a variety of experimental situations
[1,2]. These include, for example, charge density wave
systems, semiconductor superlattices with quasiperiodic
stacking sequence, two-dimensional crystals in a magnetic
field, and superconducting networks in magnetic field.
This family of models are neither periodic nor random, but
in some sense lie in between. For example, a quantum par-
ticle moving on an infinite chain and subjected to a QC or
IC modulation can exhibit critical localization properties.
Depending on the modulation strength, and in contrast to
the case of a random modulation, the particle wave func-
tion is not necessarily strongly localized (insulating); it can
also be extended (metallic) as in a translationally invari-
ant system or in a critical localization regime at the metal-
insulator transition. Typical models where these peculiar
localization properties occur are Harper-like models (IC)
or tight-binding Hamiltonians associated with a quasiperi-
odic sequence such as the Fibonacci sequence (QC). In
general, these models have two important parameters: an
irrational ~ which is responsible for the absence of peri-
odicity, and a parameter K which determines the strength
of the QC or IC modulation. The usual procedure to char-
acterize the localization properties of these Hamiltonians
H„~ is to study the scaling of the spectral properties of a
sequence of periodic Hamiltonians H & which converge
to H„& as n goes to infinity. If the widths of the q, indi-
vidual bands that compose ihe spectrum of H„n ~ decrease
exponentially with the period (q„) of H„, ~, then H ~ is
in an insulating regime and has a pure point spectrum. In
the case when the widths decrease only inversely propor-
tionally to q„, then H„& is in the metallic regime and has
an absolutely continuous spectrum. In contrast with these
two cases, the critical localization regime of H ~ is ex-
pected to have a singular continuous spectrum with multi-
fractal (MF) properties in the spectral measure. In fact, in
this latter case, the scaling found by many numerical sim-
ulations [1] is that the bandwidths decrease like —q„'t
where the exponent ct (( 1) varies from band to band so

+g(~)that there are typically -q~ bands with the same ex-
ponent. Because of these peculiarities, the critical regime

has been extensively studied by both numerical simulations
and analytic techniques [1]. However, as yet, an analyti-
cal quantitative determination of the exponents n and g(n)
has not been achievable for even one irrational cu.

The purpose of this paper is to show a QC tight-binding
model for which we are able to analytically characterize
all the spectral properties. Our work starts from the
approximate renormalization group (RG) found by Niu and
Nori [3] for a QC model on the Fibonacci chain and other
hierarchical chains. By reformulating and solving the RG
of Niu and Nori, we derive constructive and transparent
recurrence schemes for both the energy levels and the
bandwidths. From these two schemes we deduce new
recurrence relations for the spectral measure, the large
time average return probability of particles defined in [4],
the spectrum Lebesgue measure, the MF partition function
[5], and the bandwidth distribution. For most of these
relations, a natural fixed point solution is a power law, in
either size or time. By comparing with the fixed point
equation of the MF partition function, it appears that the
exponents associated to these power laws are related to a
subset of the anomalous dimensions which characterize the
MF properties of the spectral measure. A direct calculation
of the function g(n) vs u confirms these MF properties.
To complete the analysis of the spectral properties, we
also study the gap properties. We find that there are two
types of gaps: transient and stable. For the first type, their
properties are like those of the bandwidths. In contrast, for
the stable gaps, the distribution of their widths g is a stable
power law P(g) —g t'+oF~i, where Dt: is the Hausdorff
dimension of the spectrum measure.

These results complete and correct a previous MF analy-
sis of the spectral measure of this model [6];our work also
unifies many partial results obtained by other methods, for
both this model [7—9] and the Harper model [10].

We consider the tight-binding Harniltonian H„defined
on an approximant of period F„of the Fibonacci chain
by the following equation:

H„= Vc c;+t;;+ic c+i+t; i c c; i. (1)
i=1

The on-site potential V; is taken to be uniform (V; = V).
In contrast, the hopping amplitude t;;+ l from site i to site
i + 1 is given by t;;+i = t„,[1 —~(co„i)] + t, ~(to„i),
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where cu„= F„ i/F„ tends to the golden mean cu =
(~5 —1)/2 (F„+i = F„+ F„ i and F„=~ "). The
characteristic function g(cubi) takes the value 0 or 1 ac-
cording to the Fibonacci sequence, and, correspondingly,
the bond t;;+~ will take the value t or t, . For finite
n the density of weak bonds (t ) is cu„and tends to cu

in the quasiperiodic limit. For the strong bonds (t, ) the
density is ~„=F„q/F„and tends to cu . The period-
icity of the Hamiltonian H„(V, t„t ) allows us to define
Bloch boundary conditions of the form c,++ = e' c, .
For a fixed k, the energy spectrum of H„(V, t„ t ), which
we define as W„(V, t, t, ), consists of F„ levels E„'(k)
(i = 1, . . . , F„and E„' ~ E„'+' by convention). Varying
k from 0 to ~ allows the association of an energy band
of width 5„' = iE„'(~) —E„'(0)i to each of these levels.

Using a perturbative approach, Niu and Nori have
shown that in the strong modulation regime (t /t, « 1)
the spectrum W„(0,t, t, ) is the union of three subspectra
W, p(V+, t,+, t+), W„3(V, t, , t ), and W„2(V, t, , t ),
which correspond to three sub-Hamiltonians with pe-
riods F„2, F„3, F„2, and renormalized parameters
V—,t,—,t-, respectively. A representation of this per-
turbative RG, with the explicit value of the renormalized
parameters, is schematically given by the following:

t—, + zW„2(O, t, , t ),
W„(0, t„ t ) z W„3(0,t„ t ),

+t, + zW„&(O, t„t ).
(4)

Similarly, the associated recurrence for the bandwidths is
given by

pi+Fn
n

gi+Fn
n

(6)

Although this RG scheme is exact in the limit it /t, i « 1

[3], from the last equation we can give a minimal con-
dition for its validity. That is, t, has to be sufficiently
strong so that the spectrum W„2(0, t„t ), which is con-
tracted by a factor z and centered around ~ t„ is not mixed
with the spectrum W„3(0,t„t ), which is contracted by

More precisely, calling 5, the width of the spec-
trum W„(0, t„ t ), this nonoverlapping condition becomes
z 5 —2 + z 5 —3

~ 2t, Unde. r this condition, relation (4)
gives the following recurrence scheme between the energy
levels E„', F„' 2, and F„' —3.

E,' = —tA+zE„' 2 (i=1,Fn 2),
E„'+ "' =zE„' 3 (i =1 F„3), (5)
E'+F" '= tA-+ zE„' 2 (i = 1, F„2).

(2)

it, i= zt„-
it'i = zt,

it-i = zt,
tw2= ((1,
2t..

it,"i = zt„
2

z = —« 1. (3)
S

Combining these properties and using (2), we deduce the
renormalization scheme (4), where now both sides of the
arrow refer to the spectrum of Hamiltonians with the same
parameter (0, t„ t ) but distinct periods:

In principle, the scheme (2) simplifies the problem, since
it relates the spectral properties of a Hamiltonian of period
F, to those of three sub-Hamiltonians of smaller period.
However, it is clear that upon l iterations of (2) the
difficulty which is initially due to the large period F„ is
replaced by the problem of an increasing number (3') of
different Hamiltonians to be solved. As we now describe,
certain properties of the Hamiltonian and the RG (2) allow
us to overcome this difficulty. First, it is clear that the
spectrum of H, (0, t„t ) is independent of the sign of t„
and t, thus we have W„(0, t„ t ) = W, (0, it, i, it i) [11].
Second, we see that the spectrum W„2(V-, t, , t )is just—-
uniformly translated from W, 2(0, t, , t )by a factor —V —.—

Third, the renormalized parameters have the following
property: n(x) = Incr/(x lnz/z t' + inc't'),

g(n(x)) = [xln3x/2 —(1 + x) ln(l + x)'

+ (1 —2x) ln(1 —2x)'t']/inca . (7)

From this last relation we can obtain two interesting
properties of the spectrum. First, we observe that when
z = z t~(t /t, = I/8), the exponent a is independent of
x. As a consequence, the spectrum is a pure fractal with
Hausdorff dimension DF = n = inca~/Inz. In contrast,
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We now give the quantitative consequences of the last
three relations (4)—(6) upon the spectral properties.

As noted before [3] and as relation (5) makes evident,
there is a natural coding of individual energy levels. Us-
ing relation (5), we can assign a set of indices (+), (0),
or (—) to each level according to its path of trifurca
ti.ons. Therefore a typical level F„' has n+, no, and n in-
dices (+,0, —); with the constraint 2(n+ + n ) + 3no =
n(~1). For example, the lowest level is indexed by {——
—. )(n = [n/2], n+ = no = 0) and the central level by
(000 .)(n = n+ = 0, no = [n/3]) [1,12]. From the in-
dexation and relation (6), we see that the band associ-
ated with a level E„'(n+, no, n ) has a width b, „'(p, q) =
z"zi with p = (n+ + n ) and q = no Consequently, .
the number of bands of width A, (p, q) is given by
N„(p, q) = 2"(„" q). These last two results allow us to
calculate the exponents n and g(a) defined in the intro-

duction [b, „'
= F„'l ' and N„( p, q) = F0 ]. As shown

in relation (7), in the quasiperiodic limit (n ~ 00), these
exponents are functions of the parameter x = p/n, which
varies continuously in [0, 1/2] [6]:
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when, for example, z ~ z /, we see that the exponent
n varies between a;„=Int03/Inz and n,„=Inca~/Inz.
Note that these two exponents correspond to the band-
width associated with the central and edge levels, re-
spectively. This property allows us to compare their
values with the exact analytical result of Kohmoto [8,9].
From this we observe that our shrinking factors z and z
are just the dominant terms in a t /t, series expansion
of the two more exact values z,„=2/[Q(J —1)~ —4 +
J —1] and z„= I/[Ql + 4(I + 1) + 2(I + 1)], where
I =; (t /t, —t, /t )' and J = 3 + $25 + 16I.

So far, we have only analyzed the properties of individ-
ual bandwidths and levels. However, it is also possible
and very instructive to study integrated quantities. We
start with the spectral measure and a physical quantity
closely related to it. The spectral measure dp, „(E)of the
Hamiltonian H„ is dp, „(E) = p„(E)dE where p„(E) =
(1/F„)P, ", B(E —E„') is the density of states. From this
definition and relation (5) we deduce the following recur-
rence [10]:

&E+ t, )
dlL~(E) = co dP~ —p

)z

&E —t, ')
+ cu, dp, , 3

— + cu„dp, , p . (8)iz)
As an example of the application of relation (8), we cal-
culate the large time average return probability defined

by p„(t) =
i I e ' 'dp, „(E)i~ = 2~tj„(t)tj*(t) [4]. Us-

ing (8) we

first

deduc that p, „(t) = 2co~ cost, t p, „q(zt) +
co3P,„3(zt). Now, in the large time limit, we have on av-
erage (cost, t) —0 and (cos~t, t) —1/2, and from this we
immediately get

pn (t) 2~n pn —2(zt) + ~n pn —3(zt) ~ (9)
In the limit n ~, we see that an invariant solution
of relation (9) is p "(t) —t ~ where the exponent y is
determined by 2~4z ~ + ~6@ ~ = 1. As we now show,
this exponent y is one of the anomalous dimensions

Dq that characterize the MF properties of the spectral
measure. In our case, these nontrivial dimensions Dq are
defined by the requirement that the partition function [5]
I „(q, 7 = (q —1)D&) = Fn g "i(b,„') ' be stationary in
the limit n ~ ~. Using relation (6) we get the following
recurrence for the I „(q, r) [6]:

2q 3q

r„(q,.) =2 " r„,(q, r)+ "" r„,(q, .). (10)

The stationary constraint then gives a self-consistent
equation for the Dq,

2~ qz( —q) ~ + ~ qz« —q) ~ = 1

From this last relation, we immediately see that the
exponent y previously defined is, in fact, equal to D2.
A second consequence of (11) is that the Hausdorff
d1menslon Dp = Dp is the solution of 2zo' + z ' = 1.
To see further the use of relation (11) and the role
of the Dq we calculate two other quantities of interest:
the Lebesgue measure B„=g, ", 6„', and the number
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of bands of width between 6 and 5 + dh, dN, (A) =
6 (5 5,') dA. Using relation (6) we can easily

deduce a recurrence relation for each of these quantities:

(12)

~g) (gi
dN„(g) = 2dN„g — + dN„3 —

~

+ 26(g —g„)dg,

(14)
where the last term reintroduces the two largest gaps
of width g„at each iteration. A complete description
requires two other important remarks. The first is that
the initial conditions are dNo(g) = 0, dNi(g) = 0, and

de(g) = B(g —go) dg. The second is that in the limit
n ~ the width g„ tends to a fixed value g* = t&—
z (zA* + z 5') = tq (1 —z —2z)/(1 —z), where 6* is the
width of the spectrum in this limit. This last remark allows
one to replace the previous recurrence for dN„(g) by the
following effective equation which describes the infinite
size behavior more effectively:

dN„(g) = 2dN„g — + dN„3 —
~

+ 26(g —g*) dg .iz) 4z)
(15)

B„=2zB„2 + zB,

dN„(A) = 2dN, p
—+ dN„3 —

~
. (13)4z) iz)

The first of these equations was partially guessed in [7]
for a model on the Fibonacci chain; see also [10] for
a very similar relation in the case of the Harper model.
From Eq. (12), we can show that the large n behavior
of B is B, = BpF„~ where the exponent 6 is related to
the anomalous dimensions by D z = 1/(I + 6). Now,
considering (13), we see that in the limit n ~ a possible
invariant form is given by dN*(A) = 5 ('+P) dA with

P = DF. In view of relation (7), this simple invariant
solution is quite surprising, and indeed its sense is not
very clear. In fact, there are many other problems,
concerning the way we take the limit n ~, with
distributions related to the bandwidths. All of these come
from the fact that both the individual bandwidths and their
degeneracy are much too strongly fiuctuating variables
that totally change when going from F„] to F . As a
consequence, even if dN*(h) vs b, is an invariant of (13),
the function dN„(5) does not tend to dN*(h) [13].

To complete the study of the spectral properties, we
also look at the statistical properties of the gaps. Roughly
speaking, a gap width is the distance between two levels.
As a consequence, we might expect their distribution to be
quite similar to that of the bandwidths. However, there is
an important difference. The number of gaps of a chain
F„ is F„—1, thus, 2(F, q

—1) + F„3 —1 = F„—3 (
F„—1. Looking at Fig. 1, the last inequality means that
if we take only gaps coming from zW„q(~t„t, , t ) an-d

z W —3(0, t„t ), we miss two gaps which are, in fact, pre-
cisely the biggest. Taking this into account, we see that
the number of gaps of width between g and g + dg,
dN„(g) = g, ", 6(g —g„') dg, obeys the following recur-
rence (n ~ 3):
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FIG. 1. Spectrum of the approximant Hamiltonian (H„,F„),
n ( 8 deduced from relation (5) for (t, = 1, t,„=0.5). The
three initial conditions are (Hp, Fp = 1, t; = t ), (H&, F]
1, t; = t ), and (H2, F2 = 2, t2; = t„ t2;+, = t ). z and z are
the two shrinking factors. go and g* are the initial transient gap
and the maximum stable gap, respectively.

TABLE I. Gap widths obtained for the first six iterations of
relation (15). Stable gaps are written in the first column.
Transient gaps are in the third column.

F„
2
3
5
8

13
21
34
55

1

1

1z
1zz
1zz z'
1 zrz2 zz
1zzz zzz z

N(g)

¹

2
2
24
242
2428
24288
24288 162

g/go &(g)

z
z2

zz'

z'z

1

2
1

4
4
81
12

As shown in Table I the iteration of relation (15), with the
previous initial conditions, produces two kinds of gaps.
The first kind corresponds to what we call the transient
gaps. For a chain F„, these gaps have widths of the
form g = z"zqgo with 2p + 3q = n —2 and N„(p, q) =
2"("„)(the last two columns of Table I). These tvan
sient gaps are created by iteration of the initial condi-
tion dN2(g) = 6(g —go) dg, and their effective recurrence
does not contain the last term of (15). For these reasons
their distribution is strictly similar to that of bandwidths,
and, in particular, the sum of their widths decreases like
the spectrum Lebesgue measure B„. In contrast, the sec-
ond kind of gap is those created by the presence of the last
term in relation (15) (the first two columns of Table I). As
can be seen in Table I, if a gap of this kind opens for, say,
a chain F~, it persists for longer chains; it is stabl'e. For
such a chain F„these stable gaps have widths of the form

g = z"zqg* with N„(p, q) = 2" („"+~), but now 2p + 3q
takes all values between 0 and n —3. Because of this dif-

ference the distribution of the stable gaps differs from that
of the transient gaps in the following way: in a similar man-
ner to (13), the absence of the last term yields an invariant
solution to (15) of the form dN'(g) = g ~'+DF) dg. How-
ever, similarly to bandwidths [13], for the transient gaps,
dN„(g) does not tend to dN'(g) In .contrast when the last
term is present, that is for the stable gaps, then the func-
tion dN„(g) really tends to dN*(g) = g ('+~'l dg over the
whole interval [O, g*]. Because of this property, in that
case, we can also define a distribution which is of the form
P*(g) = dN'(g)/dg = g

(' D'l . An additional property
of these stabLe gaps concerns the value G„of the sum of
their widths. From (15) we see that G„obeys a recurrence
relation G„= 2@G, 2 + z G„3 + 2g*, and from this we
can deduce that, in contrast to B„G„does not decrease
with F, but tends to a value G* which is exactly equal to
the spectrum width 5*.

In conclusion, we have described as completely as
possible the statistical properties of the energy spectrum
of a tight-bonding Hamiltonian on the Fibonacci chain.
We have compared several of the new predictions with
numerical computations with satisfactory results [13]. As
the text has made clear, our results qualitatively and
quantitatively complete and unify previous works on
similar models.
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