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A Consistent Boltzmann Algorithm
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The direct simulation Monte Carlo method for the Boltzmann equation is modified by an additional
displacement in the advection process and an enhanced collision rate in order to obtain the exact hard
sphere equation of state at all densities. This leads to consistent thermodynamic and transport properties
in the low density (Boltzmann) regime. At higher densities transport properties are comparable to the
predictions of the Enskog model. The algorithm is faster than molecular dynamics at low and moderate
densities and readily run on a parallel architecture.
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The direct simulation Monte Carlo (DSMC) method is a
particle-based, numerical scheme for solving the nonlinear
Boltzmann equation for hard spheres (HS) [1—3]. Rather
than exactly calculating successive HS collisions, as in
molecular dynamics (MD) [4], DSMC generates collisions
stochastically with scattering rates and postco11ision ve-
locity distributions determined from the kinetic theory of
a dilute HS gas. DSMC encounters the usual inconsis-
tency of the Boltzmann equation; namely, it yields the
transport properties for a dilute HS gas with diameter cr,
yet has an ideal gas equation of state (implying o. = 0)
[5]. In this Letter a modification to DSMC is introduced
which removes this inconsistency and recovers the exact
HS equation of state at all densities with virtually no ad-
ditional computational cost. This consistent Boltzmann
algorithm (CBA) has transport properties that are in simi-
lar (in some cases better) agreement with HS MD than
Enskog theory [6].

In the standard DSMC method the positions and
velocities (r, , v;) of the particles (mass m) are evolved in
time by two steps: advection and collisions. During the
advection step all particles are simultaneously propagated
a distance v;6t, where the time step 6t is typically on
the order of the mean collision time. The particles are
sorted into (fixed) spatial cells of dimension 6x, which
is typically on the order of A, the mean free path.
Within each cell pairs of particles are then randomly
selected as possible collision partners with a HS collision
probability that is dependent on their relative velocities.
Once a pair is selected, the postcollision relative velocities
are also stochastically determined, consistent with the
conservation of momentum and energy. The collision is
executed with the particles remaining in place.

Since in the Boltzmann equation the advection process
corresponds to that of point particles, the virial 0
(Av; r;, ) is zero, giving an ideal gas equation of state
(Av; is the change in velocity of particle i, and r;, is
the line connecting the centers of the colliding particles).
To obtain the correct HS virial, the CBA includes the
extra displacement in the advection step that the particles
would have experienced if they had collided as hard

spheres [7],
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FIG. 1. Schematic illustration of the displacement occurring
after a collision.
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where v, = v] —v2 and v,' = v&
—v2 are the precolli-

sion and postcollision relative velocities, respectively [8].
Particle 1 is displaced by the vector distance d and par-
ticle 2 by —d, as shown in Fig. 1. Equation (1) implies
that in a one-dimensional system, when two hard rods of
length 0 collide, that after the collision the distance be-
tween centers will be larger than the separation between
similarly colliding point particles by a distance 2cr [9].
For hard spheres in three dimensions this effect general-
izes to the displacement d above. In the low density limit
the displacement yields the HS second virial coefficient
b2 = (2'/3) o.3 and hence consistency.

At higher densities the collision rate, I, in a HS gas is
enhanced due to the volume occupied by the spheres [6];
I = AY, where A is the Boltzmann (i.e., low density)
collision rate. These are, of course, functions of n, the
number density; the Y factor is known from Monte Carlo
and MD simulations. When the collision rate I is used in
the CBA, the correct virial and hence, equation of state, is
obtained at all densities.

Kinetic theory calculations and a series of computer
simulations were carried out to obtain quantitative re-
sults from this model. Pressure measured by the nor-
mal momentum transfer across a plane confirmed that the
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simulation reproduced the HS equation of state. From the
hydrodynamic expression for the direct scattering func-
tion, S(k, cu), the sound speed obtained from the location
of the Brillouin peak is in agreement with HS MD at low
densities. At higher densities the Rayleigh and Brillouin
peaks are not well separated. Thus, accurate measure-
ments of the sound speed cannot be made in this way.
The radial distribution (pair correlation) function is that
of a perfect gas, so the sound speed determined from the
equal-time density fluctuations (via the compressibility) is
not in agreement with the correct value obtained directly
from the equation of state.

The transport coefficients, namely, the shear viscosity
(q), thermal conductivity (~), and self-diffusion (D),
have been measured numerically as well as determined
analytically from their kinetic theory expressions [10,11].
They are of the Enskog form; that is, there are three
separate contributions to the total transport coefficient —a
kinetic (K), a potential (P), and a kinetic-potential cross
(C) term. For example, for the viscosity,

rt/rto = + rt b2n + g (b2n) Y, (2)

q' =A+ B exp( —st) dt, (3)

where t is measured in units of the mean collision time.
The term A represents the delta function contribution from
the initial displacement (t = 0) and is proportional to
the Boltzmann average of the displacement squared for
diffusion, of the momentum Aux squared for viscosity,
and of the energy Aux squared for thermal conductivity.
The coefficient B is proportional to the initial decay in
the autocorrelation function determined from the next
collision in which a common particle participates. The
integral has the usual representation of a Markov process
[10,11], where the exponential s represents the decay of
correlations with further stochastic collisions.

CBA calculations for the shear viscosity yield A =
144/257r, or 3 times its Enskog value, and for the ther-
mal conductivity, A = 64/257r, or twice its Enskog value.
For shear viscosity, B = —32/25(3~3 + ~) = —0.1535,
or —1.28 times its Enskog value, and for thermal con-
ductivity (numerically) B = 0.104 ~ 0.004 or 0.559 ~
0.022 times its Enskog value. Previous work [11] has
shown that the decay constant s, for the potential term
is the same as the decay constant for the kinetic and cross
terms, namely, s = 4/5 for shear viscosity, and s = 8/15
for thermal conductivity. This leads to a potential contri-
bution to g~ of 1.64 or 2.15 times the Enskog result and a
potential contribution to ~ of 1.01 ~ 0.01 or 1.34 ~ 0.01

where go is the shear viscosity in the low density (Boltz-
mann) approximation. The kinetic and cross contributions
are identical to those given by Enskog theory [6]. Specifi-
cally, rt =1, ~ =1, D =1, tt =4/5, ~ =6/5,
and Dc = 0. The potential contributions must also be of
the Enskog form; for example, for the viscosity,
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FIG. 2. HS shear velocity as a function of number density
(with kT = m = o. = 1, n* = no') . Th. e solid curve repre-
sents CBA, the dashed curve Enskog theory, and the solid
circles HS MD (from [11]).

times the Enskog result. In these calculations the artifi-
cial contribution to momentum and energy transfer due to
the finite distance separation between colliding particles
within the same cell has been eliminated.

The shear viscosity measured in nonequilibrium Aows
(Poiseuille and relaxing velocity sine wave) was in

agreement with the kinetic theory results. The shear
viscosity is in good agreement with both Enskog theory
and HS MD at lower densities; see Fig. 2. At the highest
densities the shear viscosity of the CBA shows better
agreement with HS MD than does Enskog theory. For
the thermal conductivity good agreement with HS MD is
found at all densities; see Fig. 3.

The self-diffusion coefficient can be represented by
D = DF + aDO, where DE is the self-diffusion coefficient
for HS in the Enskog approximation [12] and Dp =
o.21 /6 is the self-diffusion coefficient for a random
walker in three dimensions with jump rate I and step
length a-. The value of aD0, nonexisting in the Enskog
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FIG. 3. HS thermal conductivity as a function of number
density (with kT = m = cr = 1, n* = ncr3). The solid curve
represents CBA, the dashed curve Enskog theory, and the solid
circles HS MD (from [11]).

5213



VOLUME 74, NUMBER 26 PH YS ICAL REVIEW LETTERS 26 JUNE l995

1.8-

1.6- 0.8

1.4-

1.2-

~ 0.6-
'e
V

4 ti4

0.8-

0.6
0 0.1 0.2 0.3

n*

I

0.4 0.5 0.6

+o 02

0
I I I I I

-8 -4 0
x/1

I I

4 8

FIG. 4. HS self-diffusion (normalized by MD self-diffusion)
as a function of number density. The solid curve represents
CBA and the dashed curve Enskog theory.

theory, can be derived from A = 1, B = —47r/3(3~3 +
vr), and the numerically determined value of s = 0.628 ~
0.001. The numerical value of a = 0.200 + 0.001 is less
than 1 because of negative correlation between successive
displacements (i.e. , B ( 0). This self-diffusion coefficient
is in better agreement with HS MD than Enskog theory
for number densities up to no. 3 —= n* = 0.5; see Fig. 4.
At higher densities the agreement fails because the
displacement becomes of greater magnitude than the mean
free path. The self-diffusion is also too large at higher
densities because backscattering events connected with
structural effects are absent in this model (i.e., there is
no "caging").

The CBA runs with nearly the same efficiency as stan-
dard DSMC at low densities, since the calculation of dis-
placements and the use of the Y factor only increase the
computational cost by a few percent. At low densities HS
MD is inefficient because of the large number of possible
collision partners within a neighborhood of a mean free
path [13]. Thus, the number of operations per collision per
particle with HS MD goes as n 2 at low densities, while it
is independent of density for CBA. In comparison with a
scalar HS MD code the CBA runs 2 orders of magnitude
faster for n* = 0.01414. This advantage can be further en-
hanced by running on a parallel architecture [14].

At high densities the CBA becomes inefficient compared
with HS MD. The reason is that a cell the size of a mean
free path, for example, one which is roughly 1/10 of a HS
diameter, represents only a small fraction (1/1000) of a
single HS particle. Thus 20 X 10 particles are required
to represent 1000 HS particles, assuming 20 particles per
cell. On a single processor computer HS MD and CBA are
of comparable efficiency at n* = 0.3, while on a massively
parallel machine (with 1000 processors) this "break-even"
density increases to n* = 0.7.

In conclusion, DSMC has been a popular method for
the simulation of aerodynamic Bows where conventional
Navier-Stokes solvers are inaccurate. The CBA will
extend its applicability to a variety of new problems that

FIG. 5. Density (solid curves) and temperature (dashed
curves) versus normalized position for a Mach 2 shock wave.
The total shock tube length is 70 mean free paths (70k), the
upwind number density is n* = 0.1, and the downwind density,
determined from Hugoniot conditions, is n = 0.187 for CBA
and n* = 0.229 for DSMC. CBA is represented by filled
symbols, standard DSMC (with 1' factor enhanced collision
rate) open symbol.

involve moderate density gases. These include the study
of cold boundary layers in high altitude Aows and dense
shocks [15,16). As an example, the normalized density
and temperature profiles for a Mach 2 shock wave [17]are
compared in Fig. 5 to the profiles obtained from standard
DSMC. The methodology described in this Letter can
be extended to more realistic intermolecular potentials by
varying the displacement as a function of density and
temperature. The implementation of such an extension
is in progress.
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