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Superlong chaotic transients have been observed commonly in spatiotemporal chaotic dynamical

systems.

The phenomenology is that trajectories starting from random initial conditions behave

chaotically for an extremely long time before settling into a final nonchaotic attractor. We demonstrate
that supertransients are due to nonattracting chaotic saddles whose stable manifold measures have fractal
dimensions that are arbitrarily close to the phase-space dimension. Numerical examples using coupled

map lattices are given.

PACS numbers: 05.45.+b

Superlong chaotic transients (referred to as “supertran-
sients””) occur commonly in spatiotemporal chaotic dy-
namical systems [1,2]. In such a case, trajectories starting
from random initial conditions wander chaotically for an
arbitrarily long time before settling into a final attractor
which is usually nonchaotic (periodic or quasiperiodic).
Crutchfield and Kaneko first observed in numerical ex-
periments that spatially extended systems exhibit chaotic
transients; transients long enough so that the observation
of the system’s asymptotic attractor is practically impos-
sible [1]. More recently, Hastings and Higgins showed
the existence of complex transient dynamics in simple
discrete-time, spatially extended ecological models for a
species with alternating reproduction and dispersal [2].
They observed that with sufficiently strong nonlinearity,
the time required for the system to settle into the asymp-
totic attractor is usually very long, approaching thousands
of generations. These results are consistent with observed
behavior in populations of certain biological species [2].

Previous studies have established that transient chaos
is due to nonattracting chaotic saddles in the phase space
[3—5]. When there is a chaotic saddle in the phase space,
trajectories originating from random initial conditions
usually wander in the vicinity of the chaotic saddle for
a finite amount of time before escaping the chaotic sad-
dle and settling into the final attractor. In this paper, we
investigate the geometric properties of the chaotic saddle
which is responsible for the supertransients in spatiotem-
poral chaotic systems. It is found that the natural measure
of the stable manifold of the chaotic saddle, defined ap-
proximately as the set of initial conditions whose trajec-
tories wander for an arbitrarily long time on the chaotic
saddle, possesses a fractal dimension which is arbitrarily
close to the phase-space dimension. As a consequence,
the average lifetime of the chaotic transient induced by
the chaotic saddle is arbitrarily large.

We consider a spatiotemporal system for which there
is a nonattracting chaotic saddle A and a nonchaotic
attractor A in the phase space. All initial conditions,
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except a set of measure zero, asymptote eventually to
A. Trajectories starting from random initial conditions
typically wander chaotically near the chaotic saddle A for
a finite time before settling into A. For different initial
conditions, lengths of the chaotic transient are different.
An average lifetime can be defined as follows. Suppose at
t = 0 we choose N initial conditions, where Ny is large.
Evolve these Ny initial conditions under the dynamics.
Let N(z) be the number of trajectories that have not settled
into A at time . Then, due to the chaotic nature of A,
N(z) typically decays exponentially with time [3],

N(t) = Noexp(—t/7), (H
where 7 is the average lifetime of the chaotic transient.
For two-dimensional maps, 7 can be related to the fractal

dimension of the stable manifold measure of the chaotic
saddle A as follows [5],
=~ 1/(1 = dy)As, 2

where d; is the fractal dimension of the set of intersecting
points of a one-dimensional line with the stable manifold
of the chaotic set, and A; is the maximum Lyapunov ex-
ponent for trajectories on the chaotic saddle. In the same
spirit, we can argue the same relation for spatiotempo-
ral chaotic systems [6]. While such an argument is not
rigorous, the key implication is that the average transient
time can be arbitrarily large if d; is arbitrarily close to
1. Note that the dimension of the stable manifold mea-
sure of the chaotic saddle is N — 1 + d,, where N is
the phase-space dimension. Thus, Eq. (2) suggests that
supertransients in spatiotemporal chaotic systems are due
to chaotic saddles whose stable manifold measures have
fractal dimensions that are arbitrarily close to the phase-
space dimension [7].

Our numerical example is the diffusively coupled logis-
tic map lattice [8],

X = (1 — 8)f(x;)
ARl RN
G)
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where f(x) = ax(1 — x) is the one-dimensional logistic
equation [9], i and n denote discrete spatial site and time,
N is the number of coupled maps, and & is the coupled
strength; the coupling exists only among nearest neighbors
(diffusively coupling). Periodic boundary conditions, i.e.,
x! = xM*1 is assumed. Equation (3) was first proposed
by Kaneko [8] as a simple model for investigating the
phenomenology of spatiotemporal chaos. It is perhaps the
most extensively studied model spatiotemporal dynamical
system in the literature for the past decade. We choose the
following parameter values: a = 4, 6 = 0.8, and N =
20. Figure 1 shows a typical time series obtained at
site 8 resulting from a random initial condition. The
trajectory behaves chaotically for a very long time (about
10° iterations) before settling into the final attractor.

To determine the average transient lifetime 7, we com-
pute snapshots of histograms of A; for a large number
of uniformly chosen initial conditions. Specifically, a
32 X 32 grid of initial conditions was chosen in the two-
dimensional region defined by 0 = x(8) = 1 and 0 =
x(9) = 1, while values of x(j) (j = 1,...,N, j # 8,9)
of these initial conditions are fixed. Values of A; for these
1024 initial conditions were then computed after an ini-
tial transient of 10000 iterations [10]. Histograms of A,
at time steps ¢, = 10000n (n = 1,2,...,20) were con-
structed. Figure 2(a) shows such a histogram at ¢} =
10000. There are two peaks: one at A; = 0 and an-
other at A; = 0.36. As time evolves, the height of the
peak at A; = 0.36 decreases, indicating that this peak
corresponds to a nonattracting chaotic saddle. The peak
at A; = O represents a quasiperiodic attractor. As time
progresses, trajectories escape the chaotic saddle and ap-
proach asymptotically the quasisperiodic attractor. It is
found that the extent of the quasiperiodic attractor in
phase space is quite small. Thus the value x(8) in the time
series on the quasiperiodic attractor appears to be con-
stant, as shown in Fig. 1. Figure 2(b) shows the number
of chaotic trajectories N(¢) vs 7 in a semilogarithmic plot,
where a trajectory is counted as chaotic at time 7 if A} >
0.3 at t. The plot can be fitted by a straight line, indicating
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FIG. 1. A time series from a random initial condition for
the diffusively coupled logistic map Eq. (4) for N = 20, a =
4, and 6 = 0.8. The trajectory behaves chaotically for an
extremely long time (over 10° iterations) before settling into
the final attractor. Such superlong chaotic transients are typical
in spatiotemporal dynamical systems [1,2].
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FIG. 2. (a) A histogram of the maximum Lyapunov exponent
A computed using a uniform grid of 32 X 32 initial conditions
chosen on a two-dimensional section [x(8) and x(9)] of the
20-dimensional phase space. There are two peaks, one at
Ay = 0.36 and the other at A} = 0. The former corresponds
to a chaotic transient and the latter represents a quasiperiodic
attractor. (b) The plot of N(¢), number of chaotic trajectories
with A} > 0.3 at time ¢, on a semilogarithmic plot. The
decay of N(¢) is exponential. The average transient lifetime
is 5.18 X 10* £ 2.3 x 10°.

that the decay of chaotic trajectories is exponential. The
slope of the fitted line is —1.93 X 1075 * 8.47 X 1077,
which gives 7 =~ 5.18 X 10%, a very long transient.

To compute the stable manifold of the chaotic saddle,
we use the “sprinkle method” [5,11] by which the stable
manifold is approximated by the set of initial conditions
that still remain chaotic at time t., where 7. is large.
Figure 3(a) shows the set of initial conditions (black dots)
drawn from a 200 X 200 grid on the x(8)-x(9) plane
whose trajectories have A; > 0.3 at z. = 20000. The
picture thus represents a two-dimensional cross section of
the stable manifold in the 20-dimensional phase space.
The intermingling appearance of the stable manifold
suggests that its dimension may be arbitrarily close to the
dimension of the entire phase space.

The fractal dimension of the stable manifold mea-
sure can be computed using the uncertainty algorithm
introduced by Grebogi er al [12] to calculate the
dimension of fractal basin boundaries for dynamical
systems with multiple attractors. The procedure is as
follows: Randomly choose an initial condition xy on an
arbitrary one-dimensional line. Define x(') = xg9 + €,
where € is a small perturbation. Determine whether the
values of Aj, computed for these two initial conditions at
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FIG. 3. (a) The stable manifold of the chaotic saddle (black
dots) on the two-dimensional cross section x(8) and x(9).
(b) Plot of the fraction of uncertain initial conditions f(€)
versus the uncertainty € on a base-10 logarithmic scale. The
uncertainty exponent is estimated to be 0.0015 = 0.0038 and,
hence, the fractal dimension d; is 0.9985 = 0.0038, a quantity
that cannot be distinguished from 1. This leads to arbitrarily
long chaotic transients.

t = 20000, are distinct; i.e., one =0 and another >0.3.
If yes, then the initial condition xo is called uncertain.
For a given perturbation €, a fraction of uncertain initial
conditions f(e) can be computed by randomly choosing
many initial conditions and determining if they are un-
certain. For fractal sets, f(€) decreases with decreasing
€, typically scaling with € as f(e) ~ €%, where « is
the uncertainty exponent [12]. The fractal dimension of
the set of intersecting points of the stable manifold with
the one-dimensional line is given by d; = 1 — a (the
so-called uncertainty dimension) [12,13]. Figure 3(b)
shows logio f(e) vs logjgp €, where the initial condi-
tions were drawn on the line defined by x(9) = 0.8 in
Fig. 3(a). The uncertainty exponent is estimated to be
a = 0.015 = 0.038 and, hence, d; = 0.985 = 0.038, a
value which cannot be distinguished from 1 [14]. This
indicates that 7 can be arbitrarily large, inconsistent with
the result of very long transient observed in Fig. 2(b).

To illustrate that d; = 1 and supertransients are com-
mon for the coupled logistic map lattice [Eq. (3)], we
have explored the two-dimensional parameter space (a
and &) of Eq. (3). For a given parameter pair, the maxi-
mum Lyapunov exponent computed at finite time de-
pends extremely sensitively on the initial condition as a
consequence of the near-zero uncertainty exponent. This
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fact provides a way to detect supertransients in parameter
space; we simply compute A; at finite time for many pa-
rameter values using a fixed initial condition. Plot the pa-
rameter pairs which lead to a nonchaotic trajectory within
this time. Parameter regions where supertransients occur
will exhibit similar “riddled” structures as in Fig. 3(a).
We find that there are substantial parameter regions of
Eq. (3) that exhibit supertransients [15].

To illustrate that supertransients and d; = 1 are not
unique to the diffusively coupled logistic map lattice
[Eq. (3)], we have also investigated the following globally
coupled Zaslavsky map [16] lattice,

xioo=xl + 1-e® mod(27)
n+1 n a Yn ’ (4)

. . _ : 5 Yo
Vo1 =e %y, +ksm|:(1 —8)x, 4 + N =1 Z xf,+1:|,
Ji#i

where a and k are parameters of the single Zaslavsky
map, and & is the coupling strength. We have found
that it is also common for this system to exhibit su-
pertransients. For instance, at k =8, a = 0.5, N =
10, and 8 = 0.2, we have 7 = 1.44 X 10° = 6.4 X 10°
and d; = 0.999 83 =+ 0.00034. Examination of parame-
ter space also reveals features similar to those in the cou-
pled logistic map lattice [Eq. (3)].

We remark that supertransients can also occur in low-
dimensional chaotic systems. For example, in the event of
boundary crisis [3] where a chaotic attractor is suddenly
destroyed and is converted into a nonattracting chaotic
saddle as a system parameter p passes through a critical
value p., supertransients occur when p is immediately
above p.. Nonetheless, the average transient lifetime 7
decreases algebraically as p increases above p.. In this
sense, supertransients, meaning that 7 is arbitrarily large,
only occur in an arbitrarily small parameter interval in the
vicinity above p.. In contrast, in spatiotemporal chaotic
systems supertransients occur in substantial portions of
the parameter space [15]. Therefore, we expect supertran-
sients to be common in spatiotemporal chaotic systems.

The main contribution of this Letter is extensive nu-
merical computations demonstrating that supertransients
in coupled map lattice systems are associated with chaotic
saddles whose stable manifold measures have fractal di-
mensions arbitrarily close to the phase-space dimension.
The theoretical relation [Eq. (2)], which provides a base
and a guide for our numerical experiments, has been es-
tablished previously for low-dimensional chaotic systems
[S]. It should be noted, however, that a more general
conjecture which relates the transient lifetime to geomet-
rical properties of the chaotic saddles has been proposed
by Kantz and Grassberger [11]. In their conjecture, the
chaotic transient lifetime for maps of any dimension is
expressed by

r=1 / > - D, (5)
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where D| and A; are the partial information dimension
and Lyapunov exponent along the unstable directions,
respectively. Kantz and Grassberger proposed that if
Dj = 1 for a particular unstable direction, escape of
trajectories does not occur or is very slow along this
direction. Escape within short time (or short chaotic
transient) occurs only along these unstable directions
with D; < 1. For a chaotic system, the most unstable
direction is the direction associated with the maximum
Lyapunov exponent A;. Escape is thus most likely to
occur along this direction. Note that Dll = d,; [I1].
In coupled map lattices which exhibit supertransients,
our numerical experiments reveal that d;, or Dll , 18
arbitrarily close to 1. This implies that Dj (i > 1) will
be even closer to 1 because escape is less probable
along the directions with i > 1 and, hence, the leading
contribution to 7 comes from (1 — Dll)}tl. Therefore, for
coupled map lattices, the Kantz-Grassberger conjecture
[Eq. (5)] is equivalent to Eq. (2). We stress, however,
that this equivalence holds only for systems with d; = 1,
which indicates supertransients. The coupled map lattice
systems we investigate in this Letter appear to fall within
this category.
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