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Fock State Generation by the Methods of Nonlinear Optics
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We have found a Hamiltonian for generating a pure Fock state of the single-mode field and described
an interaction scheme for its realization.
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The possible quantum states of the single-mode field,
such as Fock states, coherent states, and squeezed states,
play a central role in quantum optics, and are widely stud-
ied, especially since the discovery of nonclassical states
of the electromagnetic field [1]. It is very useful for
both mathematical calculations and experimental realiza-
tion to have a Hamiltonian H creating a given state IP&
from the vacuum state: exp(itH) Io) = lf&. The follow-
ing two Hamiltonians are well known and widely used:
one for generating a coherent state H„h = ma~ + +*a
(a and a~ are the photon annihilation and creation op-
erators correspondingly), which describes the radiation
of a classical current [2], and another one for generat-
ing a squeezed vacuum state H, q

= p(at) + p*a [3],
which was realized in degenerate parametric amplification
and in degenerate four-wave mixing [1]. The Hamilton-
ian H„,= cpa~a + C(ata ), where k is an integer, was
proposed recently [4] for transforming a coherent state
into a quantum superposition of coherent states, known
as "Schrodinger cat" state. But, as we know, the Hamil-
tonian for the Fock state generation is still not found. In
our Letter we obtain such a Hamiltonian as a function of
the operators a and at and describe a physical process in
which the field in a Fock state can be generated. Our pro-
posal for generating Fock states differs principally from
that based on cavity quantum electrodynamics, widely dis-
cussed in recent years [5].

We proceed from the fact that a transformation of the
Hilbert space of a quantum system is unitary if and only
if it transforms an orthonormal basis into an orthonormal
one. Choosing IP~& to be the first vector of the first basis
and I/2) to be the first vector of the second basis we see
that there is an infinite number of unitary transformations,
transforming I P~ & into I P2), and therefore an infinite
number of Hamiltonians H such that for some t we have
exp(itH) IP~& = I/2&. We are interested in generating the
n-photon Fock state In) of the single-mode field from the
vacuum state Io), but we restrict ourselves to a subclass
of transformations exp(it„H„)Io) = In), namely, to that
with t, = ~'2 + 2vrm, where m is an integer, and with
H„transforming the vacuum state into the n-photon Fock
state and vice versa:

H„lo& = ln&, (1)
Generally H„is a power series in a and at, and therefore
it describes nonlinear processes of different order. Our

aim is to find a Hamiltonian H, of the lowest possible
power in a and a~ and the corresponding value of the
parameter t„.

The Hermitian operator satisfying Eq. (1) has the gen-
eral form

where

H. = 1o)(nl + ln&&ol + PFP,

P = 1 —Io&&ol —ln)(nl ~

(2)

(3)
and F is any Hermitian operator. The representation [6]

lo)(ol = lime (4)

where N is the operator of normal ordering, shows that
the operators

+ f(ata) + lo&(nl
n!

—f(n) Io) &2nl —f(O) IO&&nl + H.c.Q(2n)!
n!

Io) & I

= Io& &oI, ( )

are the infinite power series in a and a t. Now we try
to choose the operator F in such a manner as to make
the expansion of H„afinite one. To do it, note that any
operator in the Hilbert space of harmonical oscillator is
a function of a and at, and therefore it can be uniquely
represented in the following form:

g(a, a ) = gp(a a) + g [(a1) g (ata) + g' (ala)a ],
m=1

(6)
where g (x) and g' (x) are some functions. Equations (4)
and (5) show that the operators ln)(ol and Io)(nl are of
the types (a~) g (ata) and g' (ata)a correspondingly.
Therefore we may leave only the same terms in the ex-
pansion of F. As we shall see later, the term gp(a1a) is
necessary for the physical interpretation of the Hamilton-
ian, so we write

n n

F = f*(ata) + fp(ata) + f(ata), (7)
n! n!

where fp(x) is some real function, f(x) and f*(x) are some
complex function and its conjugation. Now Eq. (2) can
be rewritten in the form

= fo(a a) fo(0) lo) (ol fo(n) In) (nl
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To delete the infinite series in the expansion of H„,we
must let f (0) = 1, f(n) = 0, fo(0) = 0, and fo(n) = 0, the
simplest forms of such functions being

ata ala )f(afa) = 1, fp(afa) = pafa 1—
n

where p, is a real parameter. Substituting these functions
into Eq. (8) we obtain

(ata)2H„=pata —p, +
n

ata~ a"
+ H.c.

n ) n!

When IL = 0 the Hamiltonian given by Eq. (9) de-
scribes the process in which a pump photon of frequency
0 is converted into n photons of frequency co = A/n in
two ways, A ~ nto and A + ro ~ (n + 1)to simultane-
ously:

H;„,= X" (a"E* + H.c.) + g("+ (a a" 'E' + H.c.),
(10)

E„(t)= Ee 'n' + E*e'n' being the pump field and the
constants of nonlinear coupling satisfying the condition

(n+2) (n) /

In this process the vacuum fluctuation of the signal
wave is amplified to the n-photon state of the output
field, provided that the traveling time of the signal wave
through the medium is r = vr(m + 1/2)/gl") )E(~n!, m is
an integer, and h = 1.

In conclusion, we analyze in detail the generation
of the one-photon Fock state, which seems to be the
easiest way for the proposed method demonstration. The
Hamiltonian given by Eq. (9) with n = 1 corresponds
to linear and third-order nonlinear coupling between the
signal and pump waves having the same frequency cu =
A. According to the phase-matching condition the wave
vectors must coincide too; hence the two waves may differ
only by the polarization direction. We accept that the
signal and pump waves propagate along the z axis, and are
polarized in the x and y directions correspondingly. The
linear coupling between the waves can be produced by the

(&)
element Xxy of the medium linear susceptibility, which
can be modified by a constant electric Eo or magnetic field
applied to the sample (Pockel's, Kerr, Faraday, or Cotton-
Mouton effect). The Hamiltonian of the linear coupling is

Ht = g!,')afa + g(')E*E + (y(')afE + H.c.).

The third-order nonlinear coupling can be achieved when
2' approaches the frequency of two-photon transition
of the medium. Such a coupling is described by the
following Hamiltonian:

t tHwj Xxxxxa a aa + Xxyxya + + + Xyyyy@

+ (pxxyya a EE + gxxxya a aEt t t

+ gxyyy a E*EE + H, c )

Here X;,k~ is a sum over the corresponding elements of the
(3)nonlinear susceptibility tenser g;i«(to = —co + to + to)

with permutated Cartesian indices and frequencies [7].
The structure of H~L, and HI shows that for generating
the pure n-photon Fock state it is necessary to satisfy
the following relations: g„yy = 0, Xxx (Eo) + gxyxy IEI

(&)

(&)
XXXXX waxy (EO) + XxyyyIE~ E = X yE

condition is the most important while the other can be
achieved by choosing the intensities of pump wave and
external field.

To summarize, we have shown that the Hamiltonian
given by Eq. (9) transforms the vacuum state of the
single-mode field into a pure Fock state and that this
Hamiltonian can be realized by the methods of nonlinear
optics.
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