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Chaos vs Thermalization in the Nuclear Shell Model
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Generic signatures of quantum chaos found in realistic shell model calculations are compared with
thermal statistical equilibrium. We show the similarity of the informational entropy of individual
eigenfunctions in the mean-field basis to the thermodynamical entropy found from the level density.
Mean occupation numbers of single-particle orbitals agree with the Fermi-Dirac distribution despite the
strong nucleon interaction.
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Chaotic dynamics is one of the most extensively de-
veloping subjects in physics. Near the ground state a
many-body quantum system is modeled by a gas of quasi-
particles, and symmetry (lack of symmetry) of the mean
field determines regularity (chaoticity) of single-particle
motion ("one-body chaos"). As the excitation energy and
level density increase, the residual interactions transform
the stationary states into complicated superpositions of
quasiparticle configurations. Already at early stages of
this process the local level statistics exhibit [1—3] fea-
tures of chaos. The pattern of chaotic signatures mixed
with the apparent failure of the independent quasiparticle
model can be called "many-body chaos" [4].

In this Letter we study the relation between the compli-
cated structure of eigenstates and the general principles of
statistical mechanics. Having at our disposal exact eigen-
functions of a model Fermi system with strong interactions
(the nuclear shell model [5,6]), we compare their statistical
properties with those of the equilibrium thermal ensemble.

The statistical approach implies that the observables are
insensitive to the actual microscopic state of the system.
Averaging over the equilibrium ensemble should give
the same outcome as an expectation value for a typical
single stationary state at the same energy [7]. Being in a
certain sense a definition of equilibrium, this requires the
similarity of the generic wave functions in a given energy
region. Perfect gases give the simplest example of many-
body systems where such properties of stationary states
are evident. However, the above description also fits
the notion of stochastic dynamics. In the classical case,
the correspondence between statistical equilibrium and
chaotic trajectories exploring the whole energy surface
is taken almost for granted by many authors, see, for
example, [8]. As for the quantum case, already the
pioneering paper on compound nucleus by Bohr [9]
contains on equal footing elements of both patterns,
chaos and thermalization. The definition of chaotic wave
functions by Percival [10] assumes that all of them "look
the same" and cover the entire available configuration
space. According to Berry [11], in systems with the

chaotic classical limit such as a gas of hard spheres,
the eigenfunctions behave like random superpositions
of plane waves. This conjecture is in fact equivalent
to the microcanonical ensemble and leads [12] to the
standard (Maxwell-Boltzmann, Bose-Einstein, or Fermi-
Dirac) momentum distribution for individual particles.

One can argue that the gas of hard spheres is a spe-
cific case where the interaction is reduced to exclusion of
the inner volume of the spheres. However, it was shown
by van Hove [13] that the broader class of gaslike sys-
tems displays quantum ergodicity; a random initial wave
function evolves with time into a state which gives the
same values of observables as the microcanonical ensem-
ble. The assumption of randomness or phase incoherence
is similar to Berry's conjecture or even to Boltzmann's
Stosszahhansatz. In self-sustained Fermi systems like nu-
clei, the residual interaction cannot be reduced to rare
pairwise collisions, and the generalization of the results
derived for rigid spheres is not known. We address this
question by comparing the signatures of quantum chaos
and complexity in the nuclear shell model with the pattern
of thermal equilibrium.

The actual computations were performed for
12 particles in the sd shell with the Wildenthal in-
teraction [5,14] which has been tested by numerous
calculations of observables. Many-body basis states Ik)
were constructed with good total angular momentum 1,
M, parity m, and isospin T. In this basis, the Hamilton-
ian has diagonal elements which are dominated by the
one-body part and numerically are spread from —120 to
—60 MeV, and two-body off-diagonal elements with an
average value of about 0.5 MeV.

We studied earlier [6] the signatures of quantum
chaos both in energy eigenvalues and in complexity of
eigenvectors. Eigenvalues E for states with 1"T = 0+0
and 2+0 (with model space dimensions N = 839 and N =
3273, respectively) showed perfect agreement with chaotic
level statistics. The amplitudes Ck of eigenfunctions

IJ T;n) = QCi IJ T;k) (1)
k
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have, for a given ~n) (except for the edges of the
spectrum), Gaussian distribution with zero mean value
and variance (Ck ) = 1/N . The localization length N
gives a measure of complexity of the eigenstates at energy
E . In the extreme chaotic case N approaches the
dimension N, manifesting total mixing and delocalization
of eigenfunctions (N = 0.9N in the middle of the
spectrum for the realistic interaction and N = N for
the degenerate model with no stabilizing influence of the
mean field). The informational entropy,

s = —p(c„)' ln[(c„)'], (2)
k

as well as moments of the distribution function of the
components Ck, show that, as the excitation energy
increases, the eigenfunctions become more complex and
the maximum of complexity is reached in the middle
of the spectrum. Our measures of complexity are basis
dependent. We argued [6,15] that the mean-field basis is
preferential for such an analysis.

The same process of stochastization can be described in
the basis-independent thermodynamic language. A closed
equilibrated system with a sufficiently high number of
degrees of freedom is excited into an energy interval
(E, E + AE) where the density of states with given
values of exact integrals of motion (1 T in our case) is
p(E) The average .("thermodynamic") characteristics are
determined by the statistical weight II (E) = p (E)b, E, the
exact value of the uncertainty AE being not important
as long as AE «E. Assuming that equilibrium can be
described by the microcanonical ensemble, the statistical
weight determines the thermodynamic entropy S'"(E) =
InA(E) and temperature T according to

ggth

BE T (3)

For a subsystem of a large closed system, this leads [7]
to the canonical or grand canonical ensembles. The ther-
modynamic description is known to be fruitful even for
finite systems like nuclei [16] where the statistical ensem-
bles are not strictly equivalent due to the pronounced role
of fluctuations. The empirical nuclear level density can
be satisfactorily modeled by that of Fermi gas or rather
Fermi liquid.

In our system with a restricted Hilbert space, the
level density p(E) saturates at maximum entropy and
infinite temperature (3). For N = 839 states 0+0, it is
presented as a histogram in Fig. 1(a) together with a
Gaussian fit with the centroid at Eo = —90 MeV and
variance a-~ = 13 MeV. For such a fit, the temperature
T = o&/(Eo —E) is. shown by a solid line in Fig. 1(b).
The right half of the spectrum is associated with decreas-
ing entropy and negative temperature. Similar results
are valid for other J T classes, and the Gaussian fit
parameters turn out to be the same. The Gaussian rather
than semicircle p(E) is expected [1] for a many-body
system with two-body residual interactions. The tran-
sition from Gaussian to semicircle levei density occurs
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FIG. 1. Level density p(E) for 0+0 states (a); a histogram is
compared with the Gaussian fit (dashed line); (b) temperature
calculated from the global fit to the level density (solid line)
and found from the occupation numbers of Fig. 2(a) (dots).

[17] when many-body forces are introduced, lifting the
selection rules for interactions between configurations.
On the other hand, the banded random matrix theory
predicts, both numerically [18] and analytically [19], the
semicircle density for a sufficiently wide band of nonzero
matrix elements around the main diagonal. The realistic
Hamiltonian matrix is banded in the basis of many-body
configurations coupled via two-body forces. But the
matrix is far from being random since its elements are
linear combinations of only a few (63 in the sd shell)
two-body matrix elements.

To compare the global thermodynamic behavior with the
properties of individual eigenfunctions, we have calculated
the evolution of single-particle occupation numbers (the
isoscalar monopole component of the single-particle den-
sity matrix) nz of the orbitals A = (l, j) along the spectrum
of stationary many-body states ~n), Eq. (1),

-=1
nP,

= — (n ~a)(,a(, , (n) . (4)
m7

The results are shown in Fig. 2 where the panels (a), (b),
and (c) correspond to 0+0, 2+0, and 9 0 (N = 657) states,
respectively. All classes exhibit an identical smooth be-
havior of occupation numbers. It suggests that one can
associate to each eigenstate ~n) a single-particle "temper-
ature" T, defined by the (grand canonical) Fermi dis-
tribution fP, = (exp[(e~, —p, )/T, ] + I) '. In the center
of the spectrum where one expects infinite temperature,
all occupancies fp, = n~, /(2j + 1) indeed become equal
to each other, the common value being 1/2 for our case of
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FIG. 2. Single-particle occupation numbers, Eq. (4), vs state number n for states 0+0 (a), 2+0 (b), and 9+0 (c). (d) Occupation
numbers for 0+0 states for diagonal matrix elements reduced by a factor of 10. For all panels the three curves (sets of points) refer
to sii&, d3j~, and d&i& orbitals, from bottom to top.

12 particles in the sd shell. The effective single-particle
energies eij —p, obtained from the slopes of the lines
in Fig. 2 are —3.4, 0.0, and 4.7 MeV for dqiq, s]iq, and
d3iz orbitals, respectively (for comparison, the shell model
spin-orbit splitting near the ground state is 7.2 MeV).
One can then extract the T, for each level iit), Fig. 1(b)
(dots), and check that, despite the strong interaction, the
"single-particle thermometer" on average measures the
same temperature as obtained from the level density.

These results imply that the system can be considered
as an equilibrated Fermi liquid and its properties can be
expressed in terms of occupation numbers for a gas of
interacting quasiparticles. The microscopic mechanism of
equilibration can be understood from the fragmentation
of projected shell model states iJ T; k). Applying the
recipes of statistical spectroscopy t20], one can explain
the approximately constant occupation of the s]iz orbital
and the smooth evolution of occupation factors for d3iq
and d&iz orbitals as a function of excitation energy. The
thermodynamics of the system is determined mainly by
the stabilizing action of the mean field. An artificial
reduction by a factor of 10 of the diagonal matrix
elements implies [Fig. 2(d)] constancy of occupation
numbers (vanishing heat capacity).

Using the occupancies f,, of individual orbitals, one
can calculate the single-particle entropy of the quasiparti-
cle gas [7] for each state in),

S, = —g(2j + 1)[fP, In', + (1 —
fP, )ln(1 —fi, )].

(5)
Now we have three, apparently different, entropylike
quantities: thermodynamic entropy S'"(E) —Inp(E), in-
formational entropy S (2), and single-particle entropy S,„
(5), the latter two for individual eigenstates. In Fig. 3 we
juxtapose the energy behavior of exp(S) for different phy-
sical situations, I, II, and III (columns). Rows (a), (b), and
(c) present S'", S, and S, , respectively, for 0+0 states.

The column I of Fig. 3 shows the limit of a rela-
tively weak off-diagonal interaction (the diagonal matrix
elements are amplified by a factor of 10). The thermody-
namic entropy I(a) displays Gaussian behavior of a combi-
natorial nature typical for a slightly imperfect Fermi gas in
a finite number of states. Within the fluctuations related to
the transition from the microcanonical to grand canonical
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ensemble, it is quite similar to the single-particle picture
I(c). The informational entropy I(b) is low; only at high
level density does one see some effects of mixing. This
is an equilibrium picture of almost noninteracting particles
where the degree of complexity given by the informational
entropy is only weakly correlated with thermalization. Us-
ing the language of kinetic theory, collisions (mixing) are
necessary for equilibration, but the equilibrium properties
do not depend on the collision rate.

The opposite case III corresponds to a strong off-
diagonal interaction [as in Fig. 2(d), the diagonal matrix
elements are reduced by a factor of 10). Almost all
states are strongly mixed and the informational entropy
III(b) is near its chaotic maximum t6] of exp(S ),h, „„,=

1.P
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PEG. 3. Entropylike quantities plotted as a function of energy
for 0+0 states. Columns correspond to the diagonal matrix
elements multiplied by factors of 10 (I), I (II), and 0.1 (III); the
latter case coincides with that of Fig. 2(d). Rows (a), (b), and
(c) correspond to total statistical weight A(E) in units of the
weight for the middle of the spectrum; informational entropy,
Eq. (2), of individual states in units of the GOE entropy for
the complete mixing, exp(SP«) = 0 48N; and single-particle.
entropy, Eq. (5), of individual states calculated from the
occupation numbers, in units of S,„"= 2'", respectively.
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0 48.N = 404 for 0 0 states. S, [III(c)] is also at
the maximum level corresponding to the equiprobable
population of orbitals. Within the fluctuations, S and

S, coincide. However, as seen from III(a), the system
has normal thermodynamic properties governed by the
level density. Therefore, in the absence of the (diagonal)
mean field, the response to thermal excitation cannot be
expressed in terms of quasiparticles. In both cases, I
and III, the informational entropy becomes irrelevant for
thermodynamics, although it still characterizes the degree
of complexity of eigenstates in the mean-field basis.

The case of the realistic mean field and empirical resid-
ual interaction is shown in column II. When the mag-
nitudes are normalized, all three entropies are identical
within fIuctuations except for the edges of the spectrum.
Near the ground state the Fermi surface is already smeared
due to the two-body correlations. Even for the low-lying
states, the single-particle occupation numbers and infor-
mational entropy show deviations from the frozen Fermi
gas. The difference between low thermodynamic temper-
ature and single-particle temperature as measured, for in-
stance, in particle knockout experiments near the ground
state was discussed in [15]. For the majority of states and
for the mean field consistent with residual interactions, the
thermodynamic entropy defined either via the global level
density or in terms of occupation numbers behaves similar
to the informational entropy.

One can conclude that (i) equilibrium heating is
strongly correlated with the evolution of "many-body"
chaos and increase of complexity of individual eigen-
states; and (ii) equilibrium properties of a heated system
with strong interactions can still be described in terms of
quasiparticles and their effective energies in the appropri-
ate mean field (this opens the way for explicit calculation
of matrix elements between compound states [21]).

Let us stress the special role of the mean-field repre-
sentation [15] both for studying the degree of chaotic-
ity of specific wave functions [6] and for the statistical
description. With the artificially depressed or enhanced
diagonal matrix elements, the level density and the ther-
modynamic entropy S'" are qualitatively the same as in
the realistic case [Fig. 3(a)]. However, with no mean field
[Fig. 3(III)] the increase of complexity measured by the
S and the mixing of quasiparticle configurations mea-
sured by the S, , going together, are different from the
heating measured by the level density and the "normal"
entropy S'". The interaction is too strong, and the mixing
does not depend on the actual level spacing. Almost all
wave functions "look the same" regardless of level den-
sity, and the quasiparticle "thermometer" cannot resolve
the spectral regions with different temperatures. In this
case the microcanonical description is the only possible.

Finally we would like to give a more formal argument in
favor of the direct correspondence between chaos and ther-
malization. The general description of a quantum system
with noncomplete information uses the density matrix X7

which has, in an arbitrary many-body basis ~k), matrix el-

ements Dkq = Cq Ct where the amplitudes are averaged
[7] over the ensemble. If the ensemble is generated by
interaction with the environment, the states of the entire
system are ~k; v), where v labels the states of the environ-
ment compatible with the state ~k) of the subsystem un-

der study. Then 27kk = P, CI, „CI*, , The corresponding
statistical entropy S = —Tr(D In23) is basis independent
and equals zero for pure states of the isolated subsystem.
For canonical equilibrium ensembles, S coincides with the
thermodynamic entropy. Let us consider a gas of quasi-
particles in the ensemble generated by the residual inter-
action. This makes sense only after proper separation of
global smooth dynamics from quasirandom incoherent pro-
cesses. Such a separation defines the optimal basis, namely
that of the self-consistent mean field [15] (our "simple"
states ~k)). Compound states ~n) mimic the "total" system
(quasiparticles + interaction field). The ensemble average
of 27kk = Ck CP is to be taken over neighboring states ~n).
If the amplitudes CI, are uncorrelated and all neighboring
states ~n) are similar, only diagonal elements of Dl, t, sur-
vive, and we come to the informational entropy (2).
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