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Limiting Value for the Width Controlling the Coupling of Collective Vibrations to the
Compound Nucleus
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We show that the damping of nuclear collective excitations in the regime of chaotic intrinsic dynamics
is well described by the coupling to doorway states. Subsequent collision processes which eventually
lead the system into the compound nucleus eigenstates do not increase the damping width. We also
argue that the damping width of collective excitations in nuclei does not increase without bounds as the
excitation of the nucleus is increased, but acquires a limiting value.
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The question concerning the variety of mechanisms at
work in the damping of collective motion of many-body
systems is a fascinating one, and central in a variety of
fields ranging from condensed matter to atomic nuclei.
An example is provided by the nuclear isovector giant
dipole resonance (GDR), that is, the collective vibration
of protons against neutrons. Once excited, the mode will
relax its energy and angular momentum either by particle
emission or by coupling to the complicated intrinsic
motion of the nucleons, the compound nucleus. The
relaxation of the resonance is recognized by the width of
the associated bell-shaped strength function P(E), which
is the probability distribution for finding the resonance at
the excitation energy E.

The experimental strength function, which has been
measured in photoabsorption experiments essentially in
all nuclei throughout the mass table [1],has a total width
I = I 1 + I „. Here I „ is associated with particle emis-
sion, while I t measures the decay rate of the resonance
into the many degrees of freedom associated with the
compound nucleus. A part of the width I 1 arises from
the direct coupling of the GDR to the quadrupole defor-
mations of the nuclei. In fact, the experimental width is
systematically larger for deformed nuclei than for spheri-
cal nuclei and the absorption spectra may develop a two-
peak structure for strongly deformed systems. Here we
shall not consider the highly coherent contribution to the
width due to the nuclear deformation but only the width
I, arising from the uncorrelated decay of the resonance
into the compound nucleus eigenstates.

In the present paper we shall estimate the value of
the damping width I, . It will be concluded that I, is
independent of the excitation energy of the system, and
that its value is controlled by very simple couplings. We
write the total Hamiltonian describing the system as

H=Hp+ V,

sum of a mean field Hamiltonian Hp, and a residual
two-body interaction V. The mean field Hamiltonian Hp
gives rise to the shell structure observed in nuclei, the
eigenstates being the independent many-particle —many-
hole excitations of the fermionic system, that is, the one-
particle —one-hole (lp-lh), 2p-2h, 3p-3h, etc. excitations.

Because giant resonances are strongly excited by a one-
body external field, it is natural to describe these states as
a linear combination of 1p-1h states. As a consequence,
we shall start by diagonalizing the total Hamiltonian H
in a restricted basis of 1p-1h states. For multipolarity
J = 1 and negative parity, this diagonalization leads
essentially to one collective state ~c), the GDR, which
collects about 100% of the energy weighted sum rule
and lies at an energy which is approximately twice
the average excitation energy of the 1p-1h basis states.
For other multipolarities and parities, e.g. , J = 2+, the
diagonalization of the total Hamiltonian in the space of
1p-1h excitations leads typically to a low-lying surface
vibration aside from the corresponding giant (quadrupole)
vibration. The other states obtained in the diagonalization
of H within the 1p-1h space are, regardless of spin
and parity, noncollective, being close in energy to the
unperturbed 1p-1h excitations.

The diagonalized 1p-1h states, together with the set
2p-2h, 3p-3h, etc. states form a complete set of basis
states which we shall denote by ~p, ) and with energies
E~ = (p, ~H~p, ). The exact stationary states of the total
Hamiltonian obtained by diagonalizing H in the complete
basis of states ~p, ) will be denoted ~i) with the energies
E, . The damping of the collective state ~c) is controlled
by its coupling to the states ~p, ). Among these states,
those from the 2p-2h class are the only states that couple
strongly to the collective state ~c). These states will be
denoted the "doorway states" to the collective state ~c).
Among the doorway states, those leading to the largest
matrix elements consist of a surface vibration plus an
incoherent lp-lh state (cf., e.g. , Ref. [2]). We shall show
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This is fully consistent with the results from random ma-
trix theories [4] predicting uncorrelated Gaussian distri-
butions for the expansion coefficients X' in an arbitrary
basis. Since the basis formed by the states lp, ) is very
different from the eigenbasis formed by the compound
nuclear states li), we expect this to be valid in the present
case. Realistic shell model calculations [5] also give sup-
port to this assumption.

The second assumption is that of the uniformity of the
spectrum and of the structure of the states lp, ). To each
of these states we can associate a strength function

P~(«) = c (E;) I&p li) I' = p(E;) IX' I', (3)

where p denotes the total density of states with the same
quantum numbers as those of the mode under considera-
tion. The strength functions are normalized according to
jdE; P~(E;) = 1. The assumption of uniformity asserts
that P„(E;) = P(E; —E~), where E~ is the unperturbed
energy of I p, ) and where we have implicitly assumed av-
eraging over some nearby states lp, ). In other words, the
states

I p, ) are all characterized by a single strength func-
tion P centered around each unperturbed energy E~. Ar-
guments in favor of such an assumption can be found in
estimates of the damping width of the shell-model states
(cf., e.g, Ref. [3], appendix A). Using Fermi's golden
rule and constant interaction matrix elements, the damping
widths are found to have only a rather weak dependence
on the number of particle-hole excitations.

On the other hand, the strength function P, (E —E,)
associated with the collective state Ic) can be exceptional
because of its highly coherent character which may reduce
its damping width below that of incoherent 1p-1h states
[2]. As a result, we shall allow the strength function P, of
the collective resonance to be different from the strength
function P.

The uniformity assumption also requires that the cou-
pling between states lp, ) has a uniform distribution. For
the associated average coupling strength per unit energy,

that the damping of the GDR into the compound nucleus
eigenstates can be well estimated just from its coupling to
the set of doorway states.

For this purpose, we shall use a model for the mixing of
states developed within the context of nuclear rotational
damping [3]. This model is based on two assumptions.
First, the spreading of any state I p, ) into the compound
nucleus eigenstates li) associated with the intrinsic chaotic
dynamics is characterized by random, uncorrelated ampli-
tudes X',

Ip) = g&„'li).

we write

c ~(E.) IH~. I' = p„(E'.) 1&p IHI~)!2 = f(E, —E~).
(4)

Here p~ denotes the level density of those states which
couple, through the interaction V, to a given state I p, ).
Similarly, for the GDR we write

p.(E„)IH.„I' = p. (E'„) l&clHlp)I' = f, (E~ —E,),

with p, being the density of doorway states associated
with the collective excitation I c).

The diagonalization of the full Hamiltonian H now
proceeds in two steps. First H is diagonalized among
all the states lp, ) except for the single state lc), thus
producing a new set of eigenstates In). These states ln)
have no mutual interactions but couple only to the state
Ic) with typical matrix elements

2

$H, „&pl~) H, 2 p n

= g IH, „I P„(E.),cP E /L (x

(6)

where the strength function P~ is defined in Eq. (3). In
writing the above equation, the following assumptions
have been used: (1) that the amplitudes are uncorrelated
and (2) that the omission of couplings between the states
I p, ) and the collective state Ic) does not affect the strength
function P~(E) describing a typical state I p, ).

The coupling matrix elements H, control the last stages
of the relaxation process leading to extremely complicated
(chaotic) compound nucleus states li), each carrying tiny
fractions of the collective strength. If N is the number
of principal shell model components in the compound nu-
cleus states, then p —N and, from Eq. (6) H,
Such arguments have been used before [6] to explain the
dynamical enhancement of parity nonconservation in com-
pound nuclear states (see also Ref. [7]).

The second part of the diagonalization can be carried
out exactly, with the strength function given by [8]

1
P, (E —E,) = —Im!E —E, —X,(E —E,)]

X,(E —E,) = g (7)

The self-energy part X„(E)of the collective excitation is
expressed in terms of mixing matrix elements given in
Eq. (6). Since we average over nearby shell model states,

!

we may write

&,(E —E,) = g g IH, I P(E —E„)
P(E —E~)dE dE~ p, (E~) IH, p!2 dx dy f.(~ —y)

P(Y)
E —F., —x —io (8)
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Equations (7) and (8) relate the strength function P, of
the collective state to the strength function P of states l p, ).

One can use the same procedure of two-step diagonali-
zation for any state lp, ). In keeping with Eq. (7), the
strength function P~ is written in terms of the correspond-
ing self-energy X~ which includes coupling to other states
lv). Using the assumption of uniformity, the infinite set
of equations for P„ is substituted by the integral equation
for the common strength function P (E),

1
P(z) = —Im[z —X(z)]

X(z) = dx dy f(x —y)
P(y)

z —x —io

The set of coupled equations (7)—(9) can be solved
by iterating and defining the collective strength function
in terms of average coupling matrix elements introduced
in Eqs. (4) and (5). The relations (7)—(9) implicitly
contain the coupling of the collective excitation to a
hierarchy of ever more complicated many-particle —many-
hole states lp, ). In ordinary shell model calculations the
set of equations is truncated at a maximum number of
particle-hole excitations. Here, instead, we have imposed
uniformity in the equations so that strength functions for
high seniority states, i.e., large number of particle-hole
excitations, are not neglected but rather retained at a
limiting form.

The strength functions obtained by solving the set of
coupled equations (7)—(9) depend on both the strength
as well as the energy range of the residual interaction.
In order to discuss some of the general properties of
the solutions and eventually find analytic solutions to the
equations, we parametrize the couplings given in Eqs. (4)
and (5) as

and

P, v, W,
27r E2 + (W, /2)2

(10)

f(E) = v2 TV

E2 + (W/2)z
'
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The quantity 8', measures the range in energies F~
over which the collective state lc) couples to the doorway
states. The strength of the residual interaction p, v, has
been written in terms of a typical rms matrix element v,
and the number of doorway states p, . If the collective
state couples to an unbounded set of doorway states, we
may let both p, and W, go to infinity while keeping their
ratio p, /W, constant, the ratio being proportional to the
density p, of doorway states. With this parametrization,
the second moment of the strength function P, of the
collective state l c) is given by

M, = (cl(H —(H)) Ic) = g l(clHlp)l'
p, p

dE~f (E~ —E)=P v, = gv, ,

(12)

and a similar expression holds for the second moment
M~ l (= g, =i v ) of any state lp, ).

With the above parametrization, the self-energies ac-
quire the form

X,(z) = dx
2

z —x —i W, /2
P(),

(13)
X(z) = dx P(x) .

z —x —i W/2

In the weak coupling limit, Qp, v, « W, and ~pv &&

W, the self-energy X,(z) is a slowly changing function
of energy within the spreading width. Consequently,
the collective strength function will not depend on the
details of P(x) and eventually attain a Breit-Wigner form
(exponential decay),

P, (E —E,) = 1 r,
2' (E —E,) + (I,/2)

where the spreading width of the collective resonance is
given by

I, = 2 imp, (0) = ' ', Qp, v, « W, .
4p, v,

W,
(15)

This result also could have been obtained directly from
Eqs. (5) and (10) using Fermi's golden rule, that is,

I, = 27rv, p, (E = E,) = 27rf, (0) . (16)

2
P(z) = 4R —z R = 2~Pv, ~PvmR2

(17)

The collective strength function, solution of Eqs. (13) and
(17), becomes

QR2 —z2
P, (.) =-

sr R2 + 4zz(Rz/R2 —1)
' (18)

where R, = 2gp, v„ that is, a hybrid of the semicircle
and Breit-Wigner shapes. The effective spreading width
(FWHM) of the collective resonance varies from I, =
~3R, at R, = R to I, = R2/R at R » R, . Again,
the upper boundary for the width is determined solely by
the coupling to the doorway states. Subsequent scattering
into the compound nucleus eigenstates may change the

In keeping with the assumptions made above, this relation
applies in those cases in which the damping width I, is
much smaller than the range of the interaction W, .

In the strong coupling limit for the intrinsic states,
that is, when ~pv && W, the exact shape of the
coupling parametrized in Eq. (10) is not important and
the Hamiltonian can be modeled by a banded matrix
with random matrix elements of magnitude v in a band
of size p surrounding the diagonal. The resulting self-
consistent strength function of generic background states
is a semicircle [3] of radius R, that is,
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shape of the strength function but dc)es not add to the
damping width, which may actually decrease due to the
effect similar to motional narrowing [3,9]. Note that the
result given by Eq. (18) (strong coupling limit) could not
have been obtained in perturbation theory.

It is important to emphasize that our limiting solutions
given by Eqs. (14) and (18) are valid only for the central
part of the strength function. The wings of the distribution
depend on the details of the energy dependence of the
coupling matrix elements given in Eqs. (10) and (11) and
cannot be determined in general form.

The estimates of P, collected in Eqs. (14) and (18) give
an upper limit for the damping width of the collective
state. These results are expected to remain valid also in
the case where the compound nucleus has a very high
excitation energy and the collective state is thermally
excited, provided a thermal averaging of Eqs. (7)—(9) is
carried out.

In the case of the GDR, the result of microscopic calcu-
lations [10], which can be understood in terms of general
arguments, shows that as the excitation energy (tempera-
ture) of the compound nucleus increases, the number of
doorway states increases, while the average coupling v,
decreases so that the combination R, = 2QP, v, remains
essentially constant. In fact, as the temperature T of the
system is increased, the collectivity of the low-lying sur-
face vibrations, to which the GDR couples, is decreased.
This phenomenon takes place through a fragmentation of
the surface vibrations over an energy range of the order of
T. The effect of each doorway state is therefore reduced
as compared to the T = 0 situation. In the cases studied
[10] this effect more than upsets the increase in the number
of doorway states taking place as T increases.

In keeping with the above discussion, it may be useful
to remember [cf. Eq. (12)] that R, is proportional to the
square root of the expectation value of H in the collective
state and thus does not contain any exponentially growing
parameters. Since v3R, in all cases provides an upper
bound for the damping width, we conclude that the
width does not increase indefinitely with temperature but
saturates at a modest value, determined by the properties
of the residual interaction between simple states.

Experimental studies of the properties of the GDR
in hot nuclei seem to give support to these results. In
fact, recent measurements of the giant dipole resonance
strength function and of the anisotropy of the emitted
gamma rays [11]have allowed us to separate the effects
that intrinsic excitation energy (temperature) and angular
momentum have on the GDR strength function. The re-
sults indicate that the observed increase in the experimen-
tally measured width is accounted for almost entirely by
the increased deformation of the nuclear shape, driven by
angular momentum (cf. also Ref. [12]).

Another example of this constancy is provided by the
isobaric analog resonance. Experimental studies show
that the variations of the spreading width of this reso-
nance at different excitation energies, spins, parities, and

isospins in different nuclei are small [13]. In this case the
residual interaction mixes the resonance with the back-
ground states of lower isospin. The ratio I 1jv,. gives
a measure of the isospin violation by the residual forces
which is a smooth function of the mass number A [14].
Recent experimental data for the isospin mixing in light
nuclei (A = 60) [15] show that the width I " remains con-
stant even at excitation energies of the order of 100 MeV,
where the evaporation width is much larger than I ~.

We conclude that the damping width of a collective
vibration does not depend on the detailed coupling to
the compound nucleus eigenstates. For chaotic intrinsic
dynamics, the width is not sensitive to the temperature
and at most is equal to few times a typical matrix element
of the residual effective interaction mixing different mean
field configurations.
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